Acknowledgement
The authors would like to express their sincere information to Zou Shuliang, Xu Shoulong and Wang Junlong for their guidance and help in this paper.
References
- Christophe Bonneuil, Pierre-Louis Choquet, Benjamin Franta, Early warnings and emerging accountability: total's responses to global warming, 1971-2021, Global Environmental Change (2021), 102386, https://doi.org/10.1016/j.gloenvcha.2021.102386.
- R. Poudyal, P. Loskot, R. Nepal, et al., Mitigating the current energy crisis in Nepal with renewable energy sources, Renewable and Sustainable Energy Reviews 116 (2019), 109388, https://doi.org/10.1016/j.rser.2019.109388.
- T. Kusunoki, N. Odano, T. Yoritsune, et al., Design of advanced integral-type marine reactor, MRX. Nuclear Engineering & Design 201 (2-3) (2000) 155-175, https://doi.org/10.1016/S0029-5493(00)00285-5.
- S. Yang, D.A. Rui, A. Hw, A novel approach for occupational health and safety and environment risk assessment for nuclear power plant construction project, Jou. Cle. Pro 258 (2020), https://doi.org/10.1016/j.jclepro.2020.120945.
- A.R. Sich, The Chernobyl Nuclear Power Plant Unit-4 Accident, 30-52, https://doi.org/10.1016/B978-0-12-819725-7.00080-5, 2021.
- M. Leslie, Amid uncertainty for US nuclear power, three mile Island shuts down, Engineering 6 (1) (2020), https://doi.org/10.1016/j.eng.2019.11.004, 2.4-5.
- K. Akahane, S. Yonai, S. Fukuda, et al., The Fukushima nuclear power plant accident and exposures in the environment, Env 32 (2) (2012) 136-143, https://doi.org/10.1007/s10669-011-9381-2.
- X. Zheng, H. Tamaki, T. Sugiyama, et al., Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations[J], Reliability Engineering & System Safety 223 (2022), 108503, https://doi.org/10.1016/j.ress.2022.108503.
- M. Ghadhab, S. Junges, J.P. Katoen, et al., Safety analysis for vehicle guidance systems with dynamic fault trees, Reliability Engineering & System Safety 186 (6) (2019) 37-50, https://doi.org/10.1016/j.ress.2019.02.005.
- E. Gascard, Z. Simeu-Abazi, Quantitative analysis of dynamic fault trees by means of Monte Carlo simulations: event-driven simulation approach, Reliability Engineering & System Safety 180 (12) (2018) 487-504, https://doi.org/10.1016/j.ress.2018.07.011.
- J. Dehlinger, J.B. Dugan, Dynamic event/fault tree analysis of multi-agent systems using galileo, IEEE Computer Society (2008) 429-434, https://doi.org/10.1109/QSIC.2008.14.
- G. Merle, J.M. Roussel, J.J. Lesage, et al., Probabilistic algebraic analysis of fault trees with priority dynamic gates and repeated events, IEEE Transactions on Reliability 59 (1) (2010) 250-261, https://doi.org/10.1109/TR.2009.2035793.
- D. Ge, M. Lin, Y. Yang, et al., Quantitative analysis of dynamic fault trees using improved sequential binary decision diagrams, Reliability Engineering & System Safety 142 (2015) 289-299, https://doi.org/10.1016/j.ress.2015.06.001.
- K.S. Hsueh, A. Mosleh, The development and application of the accident dynamic simulator for dynamic probabilistic risk assessment of nuclear power plants, Reliability Engineering & System Safety 52 (3) (1996) 297-314, https://doi.org/10.1016/0951-8320(95)00140-9.
- D.R. Karanki, V.N. Dang, T.W. Kim, Discrete dynamic event tree analysis of MLOCA using ADS-TRACE[C], International Topical Meeting on Probabilistic Safety Assessment and Analysis 2011, PSA 2011 1 (2011) 610-622.
- A. Alfonsi, et al., Dynamic Event Tree Analysis through RAVEN", ANS PSA 2013 International Topical Meeting on Probabilistic Safety Assessment and Analysis, Sepp. 22-26,2013, American Nuclear Society, Columbia, SC, USA, 2013 (CD-ROM).
- D.R. Karanki, V.N. Dang, Quantification of Dynamic Event Trees - a comparison with event trees for MLOCA scenario, Reliability Engineering & System Safety 147 (2016) 19-31, https://doi.org/10.1016/j.ress.2015.10.017.
- D.R. Karanki, T.W. Kim, V.N. Dang, A dynamic event tree informed approach to probabilistic accident sequence modeling: dynamics and variabilities in medium LOCA, Reliability Engineering and System Safety 142 (2015), https://doi.org/10.1016/j.ress.2015.04.011.
- M. Amirsoltani, A. Pirouzmand, M. Mematollahi, Development of a dynamic event tree (DET)to analyze SBO accident in VVER-1000/V446 nuclear reactor, Annals of Nuclear Energy 165 (2022), 108786, https://doi.org/10.1016/j.anucene.2021.108786.
- Tarannom Parhizkar, B. Ingrid, Utne, an-Erik Vinnem, Online Probabilistic Risk Assessment of Complex Marine Systems, Springer, 2022, https://doi.org/10.1007/978-3-030-88098-9.
- Roshandel R. ParhizkarT, Long term performance degradation analysis and optimization of anode supported solid oxide fuel cell stacks, Energy Conversion Management 133 (2017) 20-30, https://doi.org/10.1016/j.enconman.2016.11.045.
- R. Roshandel, T. Parhizkar, Degradation based optimization framework for long term applications of energy systems. case study: solid oxide fuel cell stacks, Energy 107 (2016) 172-1816, https://doi.org/10.1016/j.energy.2016.04.007.
- T. Parhizkar, S. Hafeznezami, Degradation based operational optimization model to improve the productivity of energy systems. case study: solid oxide fuel cell stacks, Energy Conversion Management 158 (2018) 81-91. https://doi.org/10.1016/j.enconman.2017.12.045
- R. Roshandel, T. Parhizgar, A new approach to optimize the operating conditions of a polymer electrolyte membrane fuel cell based on degradation mechanisms, Energy Systems 4 (3) (2013) 219-237, https://doi.org/10.1007/s12667-012-0075-8.
- T. Parhizkar, Long-term degradation-based modeling and optimization framework, in: Handbook of Research on Predictive Modeling and Optimization Methods in Science Andengineering, 2018 (IGI Global).
- T. Parhizkar, A. Mosleh, R. Roshandel, Aging based optimal scheduling framework for power plants using equivalent operating hour approach, Applied Energy 205 (2017) 1345-1363, https://doi.org/10.1016/j.apenergy.2017.08.065.
- A.F. Sotoodeh, T. Parhizkar, M. Mehrgoo, et al., Aging based design and operation optimization of organic rankine cycle systems, Energy Conversion Management 199 (2019), 111892.
- C.A. Thieme, I.B. Utne, S. Haugen, Assessing ship risk model applicability to marine autonomous surface ships, Ocean Engineering 165 (2018) 140-154, https://doi.org/10.1016/j.oceaneng.2018.07.040.
- T. Parhizkar, J.E. Vinnem, I.B. Utne, A. Mosleh, Supervised dynamic probabilistic risk assessment of complex systems, Part 1: general Overview, Reliability Engineering & SystemSafety (2020), 107406, https://doi.org/10.1016/j.ress.2020.107406.
- T. Parhizkar, I.B. Utne, J.E. Vinnem, A. Mosleh, Supervised dynamic probabilistic risk assessment of complex systems, part 2:Application to risk-informed decision making, practice and results, Reliability Engineering & System Safety 208 (2021), 107392, https://doi.org/10.1016/j.ress.2020.107392.
- https://www.nrc.gov/docs/ML1906/ML19066A390.pdf.
- M. Kloos, J. Peschke, MCDET: a probabilistic dynamics method combining Monte Carlo simulation with the discrete dynamic event tree approach, Nuclear Science and Engineering 153 (2) (2006) 137-156, https://doi.org/10.13182/NSE06-A2601.
- A. Hakobyan, T. Aldemir, R. Denning, et al., Dynamic generation of accident progression event trees, Nuclear Engineering and Design 238 (2008) 3457-3467, https://doi.org/10.1016/j.nucengdes.2008.08.005.
- A. Mosleh, Y.H. Chang, Dynamic PRA Using ADS with RELAP5 Code as its Thermal Hydraulic Module. PSAM, vol. 4, Springer-Verlag, New York, 1998, pp. 2468-2473.
- J.M. Izquierdo, J. Hortal, J. Veci, et al., TRETA: a general purpose simulation code with application on nuclear power plant transients, Journal of the Spanish Nuclear Society 58 (1987) 41-47.