DOI QR코드

DOI QR Code

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo (Department of Nuclear Eng., Seoul National Univ.) ;
  • Youho Lee (Department of Nuclear Eng., Seoul National Univ.)
  • Received : 2022.04.28
  • Accepted : 2022.08.08
  • Published : 2022.12.25

Abstract

Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commis-sion (NSSC) of the Republic of Korea [No.2003018] (50%). This work was supported by the Nuclear Safety Research Program through the Ministry of Trade, Industry and Energy (MOTIE) using the financial resource granted by the institute for Korea Spent Nuclear Fuel (iKSNF) of the Republic of Korea [No.2021040101002A] (50%).

References

  1. P.A.C. Raynaud, R.E. Einziger, Cladding stress during extended storage of high burnup spent nuclear fuel, J. Nucl. Mater. 464 (2015) 304-312. https://doi.org/10.1016/j.jnucmat.2015.05.008
  2. J. Kim, H. Yoon, D. Kook, Y. Kim, A study on the initial characteristics of domestic spent nuclear fuels for long term dry storage, Nucl. Eng. Technol. 45 (2013) 377-384. https://doi.org/10.5516/NET.06.2012.082
  3. J. Hamalainen, V. Suolanen, SAFIR2018-The Finnish Research Programme on Nuclear Power Plant Safety 2015-2018: Interim Report, VTT Technical Research Centre of Finland, VTT Technology, 2017, p. 387. No. 924.
  4. Maciej Serda, Synteza i aktywnosc biologiczna nowych analogow tiosemi-karbazonowych chelatorow zelaza, Uniw. Slaski. (2013) 343-354, https://doi.org/10.2/JQUERY.MIN.JS.
  5. L.E. Herranz, J. Penalva, F. Feria, CFD analysis of a cask for spent fuel dry storage: model fundamentals and sensitivity studies, Ann. Nucl. Energy 76 (2015) 54-62, https://doi.org/10.1016/J.ANUCENE.2014.09.032.
  6. ARIS, Technical data (n.d.), https://aris.iaea.org/sites/burnup.html. (Accessed 27 May 2022).
  7. G.R.-N.E. and Technology, undefined, Development of the ENIGMA Fuel Performance Code for Whole Core Analysis and Dry Storage Assessments, Koreascience.or.Kr., 2011, https://doi.org/10.5516/NET.2011.43.6.489 (n.d.).
  8. V. V Rondinella, R.J.M. Konings, J.P. Glatz, P.D.W. Bottomley, T.A.G. Wiss, D. Papaioannou, O. Benes, J.Y. Colle, C.T. Walker, S. Bremier, D. Serrano-Purroy, D. Staicu, D. Manara, L. Vlahovic, P. Poml, T. Fanghanel, Properties and Behaviour of Irradiated Fuel under Accident Conditions, International Atomic Energy Agency (IAEA), 2012. IAEA-CNd209.
  9. U.S. NRC, Cladding considerations for the transportation and storage of spent fuel, Interim Staff Guidance-11 Rev 3 (2003).
  10. Y. Rashid, R. Dunham, Creep Modeling and Analysis Methodology for Spent Fuel in Dry Storage, Electric Power Research Institute Technical Report, 2001. EPRI-1003135.
  11. P. Bouffioux, S. Leclercq, C. Cappelaere, T. Bredel, Interim dry storage of PWR spent fuel assemblies: development of a long term creep law to assess the fuel cladding integrity. https://doi.org/10.1115/ICEM2001-1035, 2020, 201-205.
  12. E.P. Simonen, E.R. Gilbert, DATING: A Computer Code for Determining Allowable Temperatures for Dry Storage of Spent Fuel in Inert and Nitrogen Gases, Pacific Northwest Lab., Richland, WA (USA), 1988.
  13. International Atomic Energy Agency (IAEA), Durability of Spent Nuclear Fuels and Facility Components in Wet Storage, International Atomic Energy Agency (IAEA), 1998. No. TECDOC-1012.
  14. F. Feria, L. Herranz, , J.P.-A. of N. Energy, undefined, On the Way to Enabling FRAPCON-3 to Model Spent Fuel under Dry Storage Conditions: the Thermal Evolution, Elsevier, 2015 (n.d.), https://www.sciencedirect.com/science/article/pii/S030645491500376X. (Accessed 27 May 2022).
  15. J.A. Fort, D.J. Richmond, J.M. Cuta, S.R. Suffield, Thermal Modeling of the TN-32B Cask for the High Burnup Spent Fuel Data Project, Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2019.
  16. NuScale Power, NuFuel-HTP2™ Fuel and Control Rod Assembly Designs, NuScale Power, LLC, 2017.
  17. G.M. O'Donnell, H.H. Scott, R.O. Meyer, A New Comparative Analysis of LWR Fuel Designs, Division of Systems Analysis and Regulatory Effectiveness, Office of Nuclear, 2001.
  18. N.E. Todreas, M.S. Kazimi, M. Massoud, Nuclear Systems Volume II: Elements of Thermal Hydraulic Design, CRC Press, Boca Raton, 2021.
  19. A. Mieloszyk, An Improved Structural Mechanics Model for the FRAPCON Nuclear Fuel Performance Code, MS Thesis, Massachusetts Institute of Technology, 2012.
  20. W. Lyon, A. Mai, W. Liu, N. Capps, J. Rashid, A. Machiels, K. Waldrop, Impact of fuel-cladding bonding on the response of high burnup spent fuel subjected to transportation accidents, Proc. Top Fuel, Prague Czech Republic. (2018). September 30 - October 04. Paper No. A0118.
  21. K.J. Geelhood, W.G. Luscher, P.A. Raynaud, I.E. Porter, FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, vol. 1, Pacific Northwest National Laboratory, Richland, WA, 2015.
  22. G. Sabol, G. Moan, Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM International, West Conshohocken, 2000.
  23. S. Kim, J. Kang, Y.L.-J. of N. Materials, undefined, Hydride Embrittlement Resistance of Zircaloy-4 and Zr-Nb Alloy Cladding Tubes and its Implications on Spent Fuel Management, Elsevier, 2022 (n.d.), https://www.sciencedirect.com/science/article/pii/S0022311521006139. (Accessed 27 May 2022). 1006139
  24. S. Bang, H. Kim, J. Noh, D. Kim, K. Keum, Y.L.-N.E. and, undefined, Temperature-dependent Axial Mechanical Properties of Zircaloy-4 with Various Hydrogen Amounts and Hydride Orientations, Elsevier, 2022 (n.d.), https://www.sciencedirect.com/science/article/pii/S1738573321006379. (Accessed 27 May 2022). 1006379
  25. Y. Kim, D. Kook, T. Kim, J.K.-J. of N. Science, undefined, Stress and temperature-dependent hydride reorientation of Zircaloy-4 cladding and its effect on the ductility degradation, Taylor Fr 52 (2015) (2015) 717-727, https://doi.org/10.1080/00223131.2014.978829.
  26. D. Kim, D. Kim, D. Woo, Y.L.-J. of N. Materials, undefined, Development of an Image Analysis Code for Hydrided Zircaloy Using Dijkstra's Algorithm and Sensitivity Analysis of Radial Hydride Continuous Path, Elsevier, 2022 (n.d.), https://www.sciencedirect.com/science/article/pii/S002231152200143X. (Accessed 27 May 2022).
  27. D. Kim, J. Kang, Y.L.- Materialia, undefined, Accurate Prediction of Threshold Stress for Hydride Reorientation in Zircaloy-4 with Directly Measured Interface Orientation Relationship, Elsevier, 2022 (n.d.), https://www.sciencedirect.com/science/article/pii/S2589152921002933. (Accessed 27 May 2022).
  28. P. Konarski, C. Cozzo, G.K.-J. of N., undefined, Spent Nuclear Fuel in Dry Storage ConditionseCurrent Trends in Fuel Performance Modeling, Elsevier, 2021 (n.d. https://www.sciencedirect.com/science/article/pii/S0022311521003615. (Accessed 27 May 2022).
  29. E. Gilbert, E. Simonen, C. Beyer, P. Medvedev, Update of CSFM Methodology for Determining Temperature Limits for Spent Fuel Dry Storage in Inert Gas, Pacific Northwest Lab, 2001. Richland, Wa.