Acknowledgement
Department of Mechanical Engineering, Delhi Technological University, Delhi, India, supported this work. No funding is received for the above work.
References
- Al-Hassan, M., Mujafet, H. and Al-Shannag, M. (2012), "An experimental study on the solubility of a diesel-ethanol blend and on the performance of a diesel engine fueled with diesel-biodiesel-ethanol blends", Jordan J. Mech. Ind. Eng., 6(2), 147-153.
- Barabas, I., Todoru, A. and Bldean, D. (2010), "Performance and emission characteristics of an CI engine fueled with diesel-biodiesel-bioethanol blends", Fuel, 89(12), 3827-3832. https://doi.org/10.1016/j.fuel.2010.07.011.
- Dehghani, S., Haghighi, M. and Vardast, N. (2019), "Structural/texture evolution of CaO/MCM-41 nanocatalyst by doping various amounts of cerium for active and stable catalyst: Biodiesel production from waste vegetable cooking oil", Int. J. Energ. Res., 43(8), 3779-3793. https://doi.org/10.1002/er.4539.
- Esther Olubunmi, B., Fatai Alade, A., Ogbeide Ebhodaghe, S. and Tokunbo Oladapo, O. (2022), "Optimization and kinetic study of biodiesel production from beef tallow using calcium oxide as a heterogeneous and recyclable catalyst", Energ. Convers. Manage., 14, 100221. https://doi.org/10.1016/j.ecmx.2022.100221.
- Goh, B.H.H., Chong, C.T., Ge, Y., Ong, H.C., Ng, J.H., Tian, B., Ashokkumar, V., Lim, S., Seljak, T. and Jozsa, V. (2020), "Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production", Energ. Convers. Manage., 223, https://doi.org/10.1016/j.enconman.2020.113296.
- Halwe, A.D., Deshmukh, S.J., Kanu, N.J., Gupta, E. and Tale, R.B. (2021), "Optimization of the novel hydrodynamic cavitation based waste cooking oil biodiesel production process parameters using integrated L9Taguchi and RSM approach", Materials Today: Proceedings, 47, 5934-5941. https://doi.org/10.1016/j.matpr.2021.04.484
- Intarapong, P., Papong, S. and Malakul, P. (2016), "Comparative life cycle assessment of diesel production from crude palm oil and waste cooking oil via pyrolysis", Int. J. Energ. Res., 40(5), 702-713. https://doi.org/10.1002/er.3433.
- Jayakumar, M., Karmegam, N., Gundupalli, M.P., Bizuneh Gebeyehu, K., Tessema Asfaw, B., Chang, S.W., Ravindran, B. and Kumar Awasthi, M. (2021), "Heterogeneous base catalysts: Synthesis and application for biodiesel production - A review", Bioresource Technol., 331, 125054. https://doi.org/10.1016/j.biortech.2021.125054.
- Kachhwaha, S.S., Maji, S. and Babu, M.K.G. (2010), "Thumba (Citrullus colocyntis) seed oil : A sustainable source of renewable energy for biodiesel production", J. Sci. Ind. Res., 69(5), 384-389.
- Kumar, R., Tiwari, P. and Garg, S. (2013), "Alkali transesterification of linseed oil for biodiesel production", Fuel, 104, 553-560. https://doi.org/10.1016/j.fuel.2012.05.002.
- Labeckas, G. and Slavinskas, S. (2013), "Performance and emission characteristics of a direct injection diesel engine operating on KDV synthetic diesel fuel", Energ. Convers. Manage., 66, 173-188. https://doi.org/10.1016/j.enconman.2012.10.004.
- Lapuerta, M., Armas, O. and Garcia-Contreras, R. (2009), "Effect of ethanol on blending stability and Diesel engine emissions", Energ. Fuel., 23(9), 4343-4354. https://doi.org/10.1021/ef900448m.
- Lee, J.S. and Saka, S. (2010), "Biodiesel production by heterogeneous catalysts and supercritical technologies", Bioresource Technol., 101(19), 7191-7200. https://doi.org/10.1016/j.biortech.2010.04.071.
- Li, D.G., Zhen, H., Xingcai, L., Wu-Gao, Z. and Jian-Guang, Y. (2005), "Physico-chemical properties of ethanol-diesel blend fuel and its effect on performance and emissions of diesel engines", Renew. Energ., 30(6), 967-976. https://doi.org/10.1016/j.renene.2004.07.010.
- Ma, F. and Hanna, M.A. (1999), "Biodiesel production: a review", Bioresource Technol., 70(1), 1-15. https://doi.org/10.1016/S0960-8524(99)00025-5.
- Miron, L., Chiriac, R., Brabec, M. and Badescu, V. (2021), "Ignition delay and its influence on the performance of a Diesel engine operating with different Diesel-biodiesel fuels", Energy Reports, 7, 5483-5494. https://doi.org/10.1016/j.egyr.2021.08.123.
- Mohite, S., Kumar, S., Maji, S. and Pal, A. (2016), "Production of biodiesel from a mixture of Karanja and linseed oils: Optimization of process parameters", Iranica J. Energ. Environ., 7(1), 12-17. https://doi.org/10.5829/idosi.ijee.2016.07.01.03.
- Mourad, M., Mahmoud, K.R.M. and NourEldeen, E.S.H. (2021), "Improving diesel engine performance and emissions characteristics fuelled with biodiesel", Fuel, 302, 121097. https://doi.org/10.1016/j.fuel.2021.121097.
- Ong, H.C., Tiong, Y.W., Goh, B.H.H., Gan, Y.Y., Mofijur, M., Fattah, I.M.R., Chong, C.T., Alam, M.A., Lee, H.V., Silitonga, A.S. and Mahlia, T.M.I. (2021), "Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges", Energ. Convers. Manage., 228, 113647. https://doi.org/10.1016/j.enconman.2020.113647.
- Palani, Y., Devarajan, C., Manickam, D. and Thanikodi, S. (2020), "Performance and emission characteristics of biodiesel-blend in diesel engine: A review", Environ. Eng. Res., 27(1), 200338-0. https://doi.org/10.4491/eer.2020.338.
- Park, S.H., Suh, H.K. and Lee, C.S. (2008), "Effect of cavitating flow on the flow and fuel atomization characteristics of biodiesel and diesel fuels", Energ. Fuel., 22(1), 605-613. https://doi.org/10.1021/ef7003305.
- Shi, X., Pang, X., Mu, Y., He, H., Shuai, S., Wang, J., Chen, H. and Li, R. (2006), "Emission reduction potential of using ethanol-biodiesel-diesel fuel blend on a heavy-duty diesel engine", Atmos. Environ., 40(14), 2567-2574. https://doi.org/10.1016/j.atmosenv.2005.12.026.
- Singh, D., Sharma, D., Soni, S.L., Sharma, S., Kumar Sharma, P. and Jhalani, A. (2020), "A review on feedstocks, production processes, and yield for different generations of biodiesel", Fuel, 262, 116553. https://doi.org/10.1016/j.fuel.2019.116553.
- Uddin, M.R., Ferdous, K., Uddin, M.R.R. Khan, M. and Islam, M.A. (2013), "Synthesis of biodiesel from waste cooking oil", Chem. Eng. Sci., 1(2), 22-26. https://doi.org/10.12691/ces-1-2-2.