DOI QR코드

DOI QR Code

Cost-Effective Soft Lithography of Organic Semiconductors in OFETs with Compact Discs as Master Molds

Compact Disc를 마스터 몰드로 사용하는 저비용의 OFET용 유기반도체 소프트 리소그래피

  • Sejin Park (Department of Polymer Science & Engineering, Korea National University of Transportation) ;
  • Hyukjin Kim (Department of Chemical and Biological Engineering, Korea National University of Transportation) ;
  • Tae Kyu An (Department of Polymer Science & Engineering, Korea National University of Transportation)
  • 박세진 (한국교통대학교 나노화학소재공학과) ;
  • 김혁진 (한국교통대학교 화공생물공학과) ;
  • 안태규 (한국교통대학교 나노화학소재공학과)
  • Received : 2022.07.05
  • Accepted : 2022.08.11
  • Published : 2022.12.31

Abstract

OFET have require fine patterning technology for organic semiconductor solution process to be used in actual electronics. In this study, we compared and analyzed the soft lithography method which can form fine patterns more than the conventional spin coating method in order to confirm that it can have better electrical characteristics. The soft lithography method produced a flexible master mold using nano patterns on compact disc surfaces and obtained a 650 nm wide 2,7-Dioctyl [1] benzothieno [3,2-b] [1] benzo thiophene (C8-BTBT) nanowires. As a result, the field-effect mobility of devices fabricated by the spin coating method was 0.0036 cm2/Vs and mobility of devices produced by soft lithography method was 0.086 cm2/Vs, which was about 20 times higher than spin-coated devices and has better electrical performance.

Organic field-effect transistor가 실제 전자 장치에 쓰이기 위해서는 유기반도체 용액공정용 미세 패터닝 기술이 요구된다. 본 연구에서는 기존의 스핀 코팅 방법보다 미세 패턴을 형성할 수 있는 소프트 리소그래피 방법이 더 우수한 전기적 특성을 가질 수 있다는 것을 확인하기 위해 비교 분석하였다. Compact Disc 표면의 나노 패턴을 이용하여 유연한 마스터 몰드를 제작하였고, 650 nm 폭의 2,7-Dioctyl [1] benzothieno [3,2-b] [1] benzo thiophene (C8-BTBT) 나노 와이어를 얻었다. 그 결과 소프트 리소그래피 방법을 이용해 제작된 소자 이동도는 0.086 cm2/Vs이며, 스핀 코팅으로 만들어진 소자 이동도는 0.0036 cm2/Vs으로 소프트 리소그래피 방법으로 제작된 소자가 약 20배 이상 높은 이동도와 더 우수한 전기적 성능을 보였다.

Keywords

Acknowledgement

이 논문은 2022학년도 한국교통대학교의 해외파견 연구교수지원금을 받아 수행한 연구이며 이에 감사드립니다.

References

  1. J. Oh, J.H. Kim, S.Y. Lee, M.S. Kim, J.M. Kim, K. Park, Y.S. Kim, IEEE Transactions on Device and Materials Reliability, 18(1), (2018).
  2. H Ren, N Cui, Q Tang, Y Tong, X Zhao, Y Liu, Small, 14(33), (2018).
  3. M. Mizukami, S.I. Cho, K. Watanabe, M. Abiko, Y. Suzuri, S. Tokito, J. Kido, IEEE Electron Device Letters, 39(1), (2018).
  4. H.J. Cheon, T.K. An, Y.H. Kim, Macromolecular Research, 30(2), 71 (2022).
  5. M.R. Niazi, R. Li, E.Q. Li, A.R. Kirmani, M. Abdelsamie, Q. Wang, W. Pan, M.M. Payne, J.E. Anthony, D.M. Smilgies, S.T. Thoroddsen, E.P. Giannelis, A. Amassian, Nature Communications, 6, 8598 (2015).
  6. K. Kim, M. Jang, M. Lee, T. K. An, J. E. Anthony, S. H. Kim, H. Yang, C.E. Park, Journal of Materials Chemistry C, 4(29), 6996 (2016).
  7. D. Ji, L. Jiang, L. Jiang, X. Fu, H. Dong, J. Yu, W. Hu, Chemical Communications, 50(61) 8328 (2014).
  8. H.-j. Kwon, K. Kim, T.K An, S.H. Kim, C.E. Park, Journal of Industrial and Engineering Chemistry, 75, 187 (2019).
  9. A. Kim, K. S. Jang, J. Kim, J. C. Won, M. H. Yi, H. Kim, D. K. Yoon, T. J. Shin, M. H. Lee, J. W. Ka, Y. H. Kim, Advanced Materials, 25(43), 6219 (2013). 
  10. K. Kim, J. Cho, H. Jhon, J. Jeon, M. Kang, C.E. Park,, J. Lee, T.K. An, Nanotechnology, 28(20), 205304 (2017).
  11. A.J. Smith, C. Wang, D. Guo, C. Sun, J. Huang, Nature Communications, 5, 5517 (2014).
  12. H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, Journal of The American Chemical Society, 129(51), 15732 (2007).
  13. T. Izawa, E. Miyazaki, K. Takimiya, Advanced Materials, 20(18), 3388 (2008).
  14. K. Kim, Y. Rho, Y. Kim, S.H. Kim, S.G. Hahm, C.E. Park, Advanced Materials, 28(16), 3209 (2016).
  15. M. Ullah, D.M. Taylor, R. Schwodiauer, H. Sitter, S. Bauer, N.S. Sariciftci, T.B. Singh, Journal of Applied Physics, 106(11), 114505, (2009).
  16. H. Sirringhaus, Advanced Materials, 17(20), 2411 (2005).
  17. Z. Zhou, Z. Zhang, Q. Wu, X. Ji, J. Wang, X. Zeng, S.-P. Feng, P. K. L. Chan, ACS Applied Materials & Interfaces, 10(41), 35395 (2018).
  18. S. Kwon, J. Kim, G. Kim, K. Yu, Y.-R. Jo, B.-J. Kim, J. Kim, H. Kang, B. Park, K. Lee, Advanced Materials, 27(43), 6870 (2015).
  19. K.Y. Suh, H.H. Lee, Advanced Functional Materials, 12(6-7), 405 (2002).
  20. J. Oh, J.H. Kim, S.Y. Lee, M.S. Kim, J.M. Kim, K. Park, Y.S. Kim, IEEE Transactionson Deviceand Materials Reliability, 18(1), (2018).
  21. H. Ren, N. Cui, Q. Tang, Y. Tong, X. Zhao, Y. Liu, Small, 14(33), (2018).
  22. M. Mizukami, S.I. Cho, K. Watanabe, M. Abiko, Y. Suzuri, S. Tokito, J. Kido, IEEE Electron Device Letters, 39(1), (2018).
  23. H.J. Cheon, T.K. An, Y.H. Kim, Macromolecular Research, 30(2), 71 (2022)
  24. M.R. Niazi, R. Li, E.Q. Li, A.R. Kirmani, M. Abdelsamie, Q. Wang, W. Pan, M.M. Payne, J.E. Anthony, D.M. Smilgies, S.T. Thoroddsen, E.P. Giannelis, A. Amassian, Nature Communications, 6, 8598 (2015).