DOI QR코드

DOI QR Code

Evaluation of host and bacterial gene modulation during Lawsonia intracellularis infection in immunocompetent C57BL/6 mouse model

  • 투고 : 2021.10.20
  • 심사 : 2022.01.27
  • 발행 : 2022.05.31

초록

Background: Proliferative enteritis caused by Lawsonia intracellularis undermines the economic stability of the swine industry worldwide. The development of cost-effective animal models to study the pathophysiology of the disease will help develop strategies to counter this bacterium. Objectives: This study focused on establishing a model of gastrointestinal (GI) infection of L. intracellularis in C57BL/6 mice to evaluate the disease progression and lesions of proliferative enteropathy (PE) in murine GI tissue. Methods: We assessed the murine mucosal and cell-mediated immune responses generated in response to inoculation with L. intracellularis. Results: The mice developed characteristic lesions of the disease and shed L. intracellularis in the feces following oral inoculation with 5 × 107 bacteria. An increase in L. intracellularis 16s rRNA and groEL copies in the intestine of infected mice indicated intestinal dissemination of the bacteria. The C57BL/6 mice appeared capable of modulating humoral and cell-mediated immune responses to L. intracellularis infection. Notably, the expression of genes for the vitamin B12 receptor and for secreted and membrane-bound mucins were downregulated in L. intracellularis -infected mice. Furthermore, L. intracellularis colonization of the mouse intestine was confirmed by the immunohistochemistry and western blot analyses. Conclusions: This is the first study demonstrating the contributions of bacterial chaperonin and host nutrient genes to PE using an immunocompetent mouse model. This mouse infection model may serve as a platform from which to study L. intracellularis infection and develop potential vaccination and therapeutic strategies to treat PE.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A1A03033084).

참고문헌

  1. Cross RF, Smith CK, Parker CF. Terminal ileitis in lambs. J Am Vet Med Assoc. 1973;162(7):564-566.
  2. Fox JG, Dewhirst FE, Fraser GJ, Paster BJ, Shames B, Murphy JC. Intracellular Campylobacter-like organism from ferrets and hamsters with proliferative bowel disease is a Desulfovibrio sp. J Clin Microbiol. 1994;32(5):1229-1237. https://doi.org/10.1128/jcm.32.5.1229-1237.1994
  3. Klein EC, Gebhart CJ, Duhamel GE. Fatal outbreaks of proliferative enteritis caused by Lawsonia intracellularis in young colony-raised rhesus macaques. J Med Primatol. 1999;28(1):11-18. https://doi.org/10.1111/j.1600-0684.1999.tb00084.x
  4. Karuppannan AK, Opriessnig T. Lawsonia intracellularis: revisiting the disease ecology and control of this fastidious pathogen in pigs. Front Vet Sci. 2018;5:181. https://doi.org/10.3389/fvets.2018.00181
  5. Vannucci FA, Gebhart CJ, McOrist S. Proliferative enteropathy. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. Diseases of Swine. Hoboken: John Wiley & Sons, Inc.; 2019, 898-911.
  6. Guedes RM, Machuca MA, Quiroga MA, Pereira CE, Resende TP, Gebhart CJ. Lawsonia intracellularis in pigs: progression of lesions and involvement of apoptosis. Vet Pathol. 2017;54(4):620-628. https://doi.org/10.1177/0300985817698206
  7. Smith DG, Lawson GH. Lawsonia intracellularis: getting inside the pathogenesis of proliferative enteropathy. Vet Microbiol. 2001;82(4):331-345. https://doi.org/10.1016/S0378-1135(01)00397-2
  8. Pusterla N, Gebhart CJ. Equine proliferative enteropathy--a review of recent developments. Equine Vet J. 2013;45(4):403-409. https://doi.org/10.1111/evj.12075
  9. Huan YW, Bengtsson RJ, MacIntyre N, Guthrie J, Finlayson H, Smith SH, et al. Lawsonia intracellularis exploits β-catenin/Wnt and Notch signalling pathways during infection of intestinal crypt to alter cell homeostasis and promote cell proliferation. PLoS One. 2017;12(3):e0173782. https://doi.org/10.1371/journal.pone.0173782
  10. Gebhart CJ, Guedes RM. Lawsonia intracellularis. In: Gyles CL, Prescott JF, Songer JG, Thoen CO. Pathogenesis of Bacterial Infections in Animals. 2010, 503-512.
  11. Pereira CE, Resende TP, Armien AG, Laub RP, Vannucci FA, Santos RL, et al. Survival of Lawsonia intracellularis in porcine peripheral blood monocyte-derived macrophages. PLoS One. 2020;15(7):e0236887. https://doi.org/10.1371/journal.pone.0236887
  12. Sampieri F, Vannucci FA, Allen AL, Pusterla N, Antonopoulos AJ, Ball KR, et al. Species-specificity of equine and porcine Lawsonia intracellularis isolates in laboratory animals. Can J Vet Res 2013;77(4):261-272.
  13. Boutrup TS, Boesen HT, Boye M, Agerholm JS, Jensen TK. Early pathogenesis in porcine proliferative enteropathy caused by Lawsonia intracellularis. J Comp Pathol. 2010;143(2-3):101-109. https://doi.org/10.1016/j.jcpa.2010.01.006
  14. Resende TP, Medida RL, Guo Y, Vannucci FA, Saqui-Salces M, Gebhart C. Evaluation of mouse enteroids as a model for Lawsonia intracellularis infection. Vet Res. 2019;50(1):57. https://doi.org/10.1186/s13567-019-0672-9
  15. Collins AM, Love RJ, Jasni S, McOrist S. Attempted infection of mice, rats and chickens by porcine strains of Lawsonia intracellularis. Aust Vet J. 1999;77(2):120-122. https://doi.org/10.1111/j.1751-0813.1999.tb11680.x
  16. Cooper DM, Swanson DL, Barns SM, Gebhart CJ. Comparison of the 16S ribosomal DNA sequences from the intracellular agents of proliferative enteritis in a hamster, deer, and ostrich with the sequence of a porcine isolate of Lawsonia intracellularis. Int J Syst Bacteriol. 1997;47(3):635-639. https://doi.org/10.1099/00207713-47-3-635
  17. Bryda EC. The Mighty Mouse: the impact of rodents on advances in biomedical research. Mo Med. 2013;110(3):207-211.
  18. Nathues H, Holthaus K, grosse Beilage E. Quantification of Lawsonia intracellularis in porcine faeces by real-time PCR. J Appl Microbiol. 2009;107(6):2009-2016. https://doi.org/10.1111/j.1365-2672.2009.04389.x
  19. Zhou M, Guo Y, Zhao J, Hu Q, Hu Y, Zhang A, et al. Identification and characterization of novel immunogenic outer membrane proteins of Haemophilus parasuis serovar 5. Vaccine. 2009;27(38):5271-5277. https://doi.org/10.1016/j.vaccine.2009.06.051
  20. Bialkowska AB, Ghaleb AM, Nandan MO, Yang VW. Improved Swiss-rolling technique for intestinal tissue preparation for immunohistochemical and immunofluorescent analyses. J Vis Exp. 2016;113(113):54161.
  21. Bengtsson RJ, MacIntyre N, Guthrie J, Wilson AD, Finlayson H, Matika O, et al. Lawsonia intracellularis infection of intestinal crypt cells is associated with specific depletion of secreted MUC2 in goblet cells. Vet Immunol Immunopathol. 2015;168(1-2):61-67. https://doi.org/10.1016/j.vetimm.2015.08.005
  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) Method. Methods. 2001;25(4):402-408. https://doi.org/10.1006/meth.2001.1262
  23. Richer L, Potula HH, Melo R, Vieira A, Gomes-Solecki M. Mouse model for sublethal Leptospira interrogans infection. Infect Immun. 2015;83(12):4693-4700. https://doi.org/10.1128/IAI.01115-15
  24. Yeh JY, Ga AR. Systemic cytokine response in pigs infected orally with a Lawsonia intracellularis isolate of South Korean origin. J Vet Med Sci. 2018;80(1):13-19. https://doi.org/10.1292/jvms.17-0036
  25. Pie S, Lalles JP, Blazy F, Laffitte J, Seve B, Oswald IP. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J Nutr. 2004;134(3):641-647. https://doi.org/10.1093/jn/134.3.641
  26. Vannucci FA, Pusterla N, Mapes SM, Gebhart C. Evidence of host adaptation in Lawsonia intracellularis infections. Vet Res. 2012;43(1):53. https://doi.org/10.1186/1297-9716-43-53
  27. Collins AM, Fell S, Pearson H, Toribio JA. Colonisation and shedding of Lawsonia intracellularis in experimentally inoculated rodents and in wild rodents on pig farms. Vet Microbiol. 2011;150(3-4):384-388. https://doi.org/10.1016/j.vetmic.2011.01.020
  28. Guedes RM, Gebhart CJ. Preparation and characterization of polyclonal and monoclonal antibodies against Lawsonia intracellularis. J Vet Diagn Invest. 2003;15(5):438-446. https://doi.org/10.1177/104063870301500506
  29. Fourie KR, Choudhary P, Ng SH, Obradovic M, Brownlie R, Anand SK, et al. Evaluation of immunogenicity and protection mediated by Lawsonia intracellularis subunit vaccines. Vet Immunol Immunopathol. 2021;237:110256. https://doi.org/10.1016/j.vetimm.2021.110256
  30. Fourie KR, Wilson HL. Understanding GroEL and DnaK stress response proteins as antigens for bacterial diseases. Vaccines (Basel). 2020;8(4):773. https://doi.org/10.3390/vaccines8040773
  31. Pluske JR, Pethick DW, Hopwood DE, Hampson DJ. Nutritional influences on some major enteric bacterial diseases of pig. Nutr Res Rev. 2002;15(2):333-371. https://doi.org/10.1079/NRR200242
  32. Quintana-Hayashi MP, Padra M, Padra JT, Benktander J, Linden SK. Mucus-pathogen interactions in the gastrointestinal tract of farmed animals. Microorganisms. 2018;6(2):55. https://doi.org/10.3390/microorganisms6020055
  33. McNamara N, Basbaum C. Signaling networks controlling mucin production in response to Grampositive and Gram-negative bacteria. Glycoconj J. 2001;18(9):715-722. https://doi.org/10.1023/A:1020875423678
  34. Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M, et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity. 2016;44(3):647-658. https://doi.org/10.1016/j.immuni.2016.02.006
  35. Holyoake PK, Cutler RS, Caple IW, Monckton RP. Enzyme-linked immunosorbent assay for measuring ileal symbiont intracellularis-specific immunoglobulin G response in sera of pigs. J Clin Microbiol. 1994;32(8):1980-1985. https://doi.org/10.1128/jcm.32.8.1980-1985.1994
  36. Shepherd FR, McLaren JE. T cell immunity to bacterial pathogens: mechanisms of immune control and bacterial evasion. Int J Mol Sci. 2020;21(17):6144. https://doi.org/10.3390/ijms21176144
  37. Cheng HY, Ning MX, Chen DK, Ma WT. Interactions between the gut microbiota and the host innate immune response against pathogens. Front Immunol. 2019;10:607. https://doi.org/10.3389/fimmu.2019.00607
  38. Vannucci FA, Gebhart CJ. Recent advances in understanding the pathogenesis of Lawsonia intracellularis infections. Vet Pathol. 2014;51(2):465-477. https://doi.org/10.1177/0300985813520249
  39. Overbergh L, Giulietti A, Valckx D, Decallonne R, Bouillon R, Mathieu C. The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J Biomol Tech. 2003;14(1):33-43.
  40. Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, et al. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006;203(4):941-951. https://doi.org/10.1084/jem.20052124