DOI QR코드

DOI QR Code

Component and Phase Analysis of Calcium Silicate Cement Clinker by Raw Materials Mix Design

원료 배합에 따른 칼슘 실리케이트 시멘트 클링커의 성분 및 상 분석

  • Lee, Hyang-Sun (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Song, Hun (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2022.02.18
  • Accepted : 2022.04.12
  • Published : 2022.06.20

Abstract

In the cement industry, in order to reduce CO2 emissions, technology for raw materials substitution and conversion, technology for improving process efficiency of utilizing low-carbon new heat sources, and technology for collecting and recycling process-generated CO2 are being developed. In this study, we conducted a basic experiment to contribute to the development of CSC that can store CO2 as carbonate minerals among process-generated CO2 capture and recycling technologies. Three types of CSC clinker with different SiO2/(CaO+SiO2) molar ratios were prepared with the clinker raw material formulation, and the characteristics of the clinker were analyzed. As a result of analysis and observation of CSC clinker, wollastonite and rankinite were formed. In addition, as a result of the carbonation test of the CSC paste, it was confirmed that calcite was produced as a carbonation product. The lower the SiO2/(CaO+SiO2) molar ratio in the CSC clinker chemical composition, the lower the wollastonite production amount, and the higher the rankinite production amount. And the amount of calcite production increased with the progress of carbonation of the CSC paste specimen. It is judged that rankinite is more reactive in mineralizing CO2 than wollastonite.

시멘트산업에서는 CO2 배출량 감축을 위해 원료대체 및 전환기술, 저탄소 신열원 활용 공정효율 향상기술, 공정발생 CO2 포집 및 재자원화 기술 개발이 진행되고 있다. 공정발생 CO2 포집 및 재자원화는 대규모로 배출되는 배기가스에서 CO2를 분리 및 포집하는 기술로 지중저장과 해양저장, 탄산염 광물화로 크게 세 가지로 나뉜다. 이에 본 연구에서는 CO2를 탄산염광물로 저장할 수 있는 CSC를 개발하고자 기초 실험을 진행하였다. 클링커 원료 배합에서 SiO2/(CaO+SiO2) 몰비가 다른 세 가지의 CSC 클링커를 제작하여 클링커의 성분 및 상 분석을 진행하였다. 제조한 CSC 클링커는 Wollastonite와 Rankinite가 생성되었다. 또한, CSC 페이스트 탄산화 시험편은 탄산화 생성물로 Calcite가 생성되었음을 확인할 수 있었다. CSC 클링커와 CSC 탄산화 시험편은 CSC 클링커 화학조성에서 SiO2/(CaO+SiO2) 몰비가 낮을수록 Wollastonite 생성량이 감소하고 Rankinite의 생성량이 증가하였고, CSC 페이스트 시험편의 탄산화 진행에 따라 Calcite 생성량이 증가하였다. 이는 Rankinite가 Wollastonite보다 CO2를 광물화하는데 반응성이 높은 것으로 판단된다.

Keywords

Acknowledgement

This experiment research had been conducted under the financial support provided by the R&D program (KPP21001) of KICET and R&D program(Development of calcium silicate cement and cement products, RS-2022-00155521) of KEIT.

References

  1. 2050 Carbon Neutral, Participation in Cement Industry! [Internet]. Sejong (Korea): Ministry of Trade, Industry and Energy; 2020 Feb 16. Available from: http://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_cd_n=81&bbs_seq_n=163811
  2. Carbon Neutral Industry.Energy R&D Strategy [Internet]. Sejong (Korea): Ministry of Trade, Industry and Energy; 2021 Nov 17. Available from: http://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_cd_n=81&bbs_seq_n=164863
  3. Moon EJ, Kim SJ, Park HG, Choi YC. A study on the cementitious materials as carbon capture materials-micro-structure change by carbonation curing. Journal of the Korea institute for structural maintenance and inspection. 2018 Nov;22(6):123-9. https://doi.org/10.11112/jksmi.2018.22.6.123
  4. Hwang JH, Ji HU, Thao NH. Review of CO2 undersea storage technology and research on environmental impact technology. Coastal and Ocean. 2010 Sep; 3(2):13-27.
  5. Kim HM, Nah IW. Brief review on carbon dioxide capture and utilization technology. Korean Chemical Engineering Research. 2019 Oct;57(5):589-95. https://doi.org/10.9713/kcer.2019.57.5.589
  6. Seifritz W. CO2 disposal by means of silicates. Nature. 1990 Jun;345:486. https://doi.org/10.1038/345486b0
  7. Kim HS, Chae SH, An JW, Jang YN. CO2 immobilization technology by mineral carbonation. The mineralogical Society of Korea. Mineral science and industry. 2009 Jun;22(1):71-85.
  8. Park YJ. Carbon dioxide due to mineral carbonation preservation and utilization. News & Information for Chemical Engineers. 2016 Jun;23(3):282-6.
  9. Jeong SK. Carbon dioxide mineralization(II) [Internet]. Seoul (Korea): Chemical Engineering and Materials Research Information Center. 2011 Apr; Available from: https://www.cheric.org/research/ip/ipview.php?code=p201104
  10. Prigiobbe V, Hanchen M, Werner M, Baciocchi R, Mazzotti M. Mineral carbonation process for CO2 sequestration. Energy Procedia. 2009 Feb;1(1):4885-90. https://doi.org/10.1016/j.egypro.2009.02.318
  11. Huijgen WJJ, Comans RNJ. Carbon dioxide storage by mineral carbonation. United Kingdom: IEA Greenhouse Gas R&D Programme; 2005 Sep 40 p. Report No.:ECN-C--05--022.
  12. Svensson K, Neumann A, Menezes FF, Lempp C, Pollmann H. The conversion of wollastonite to CaCO3 considering its use for CCS application as cementitious material. Applied Sciences. 2018 Feb;8(2):304. https://doi.org/10.3390/app8020304
  13. Kai W, Liang R, Luqing Y. Excellent carbonation behavior of rankinite prepared by calcining the C-S-H: Potential recycling of waste concrete powders for prefabricated building products. Materials. 2018 Aug;11(8):1474. https://doi.org/10.3390/ma11081474
  14. Eisenhu.ttenleute VD. Slag Atlas. 2nd ed. Germany: Stahleisen; 1995. 359 p.
  15. Rietveld HM. A profile refinement method for nuclear and magnetic structure. Journal of Applied Crystallography. 1969 Jun; 2(2):65-71. https://doi.org/10.1107/S0021889869006558
  16. Smigelskyte A, Siauciunas R, Wagner M, Urbonas L. Synthesis of rankinite from natural Ca-Si rocks and its hardening in CO2 atmosphere. Journal of Materials. 2019 Dec;49(1):111-9.