DOI QR코드

DOI QR Code

High-pressure NMR application for α-synuclein

  • Kim, Jin Hae (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2022.06.18
  • Accepted : 2022.06.19
  • Published : 2022.06.20

Abstract

High-pressure (HP) NMR is a powerful method to elucidate various structural features of amyloidogenic proteins. Following the previous mini-review recapitulating the HP-NMR application for amyloid-β peptides of the last issue [J. H. Kim, J. Kor. Mag. Reson. Soc. 26, 17 (2022)], the recent advancements in the HP NMR application for α-synuclein (α-Syn) are briefly summarized and discussed here. Although α-Syn is a well-known intrinsically disordered protein (IDP), several studies have shown that it can also exhibit heterogeneous yet partially folded conformations, which may correlate with its amyloid-forming propensity. HP NMR has been a valuable tool for investigating the dynamic and transient structural features of α-Syn and has provided unique insights to appreciate its aggregation-prone characters.

Keywords

Acknowledgement

This research was supported by the National Research Foundation (NRF) funded by the Ministry of Science & ICT (NRF-2020R1I1A2074335).

References

  1. B. Fauvet, et al. J. Biol. Chem. 287, 15345 (2012) https://doi.org/10.1074/jbc.M111.318949
  2. M. Vidovic and M. G. Rikalovic, Cells 11, 1732 (2022) https://doi.org/10.3390/cells11111732
  3. M. G. Spillantini, et al. Nature 388, 839 (1997) https://doi.org/10.1038/42166
  4. A. Abeliovich, et al. Neuron 25, 239 (2000) https://doi.org/10.1016/S0896-6273(00)80886-7
  5. J. Burre, et al. Science 329, 1663 (2010) https://doi.org/10.1126/science.1195227
  6. H. J. Lee, C. Choi, and S. J. Lee, J. Biol. Chem. 277, 671 (2002) https://doi.org/10.1074/jbc.M107045200
  7. F. X. Theillet, Nature 530, 45 (2016) https://doi.org/10.1038/nature16531
  8. N. Rezaei-Ghaleh, Angew. Chemie - Int. Ed. 57, 15262 (2018) https://doi.org/10.1002/anie.201808172
  9. L. C. Serpell, J. Berriman, R. Jakes, M. Goedert, and R. A. Crowther, Proc. Natl. Acad. Sci. U. S. A. 97, 4897 (2000) https://doi.org/10.1073/pnas.97.9.4897
  10. L. Fonseca-Ornelas, et al. Nat. Commun. 5, 5857 (2014) https://doi.org/10.1038/ncomms6857
  11. M. Vilar, et al. Proc. Natl. Acad. Sci. U. S. A. 105, 8637 (2008) https://doi.org/10.1073/pnas.0712179105
  12. M. D. Tuttle, et al. Nat. Struct. Mol. Biol. 235, 409 (2016)
  13. R. Guerrero-Ferreira, et al. Elife 7, 1 (2018)
  14. B. Li, et al. Nat. Commun. 9, 1 (2018) https://doi.org/10.1038/s41467-017-02088-w
  15. Y. Sun, et al. Nat. Commun. 12, 1 (2021) https://doi.org/10.1038/s41467-020-20314-w
  16. D. Foguel, et al. Proc. Natl. Acad. Sci. U. S. A. 100, 9831 (2003) https://doi.org/10.1073/pnas.1734009100
  17. J. Roche, J. Ying, A. S. Maltsev, and A. Bax, ChemBioChem 14, 1754 (2013) https://doi.org/10.1002/cbic.201300244
  18. G. A. P. de Oliveira, et al. Sci. Rep. 6, 37990 (2016) https://doi.org/10.1038/srep37990
  19. U. Golebiewska and S. Scarlata, FEBS Lett. 589, 3309 (2015) https://doi.org/10.1016/j.febslet.2015.09.019
  20. F. Piccirilli, et al. Arch. Biochem. Biophys. 627, 46 (2017) https://doi.org/10.1016/j.abb.2017.06.007
  21. F. Piccirilli, et al. Biophys. J. 113, 1685 (2017) https://doi.org/10.1016/j.bpj.2017.08.042
  22. H. J. Dyson and P. E. Wright, Curr. Opin. Struct. Biol. 70, 44 (2021)
  23. J. H. Kim, J. Kor. Mag. Reson. Soc. 26, 17 (2022)