DOI QR코드

DOI QR Code

PDMS 코팅을 통한 지르코늄 기반 금속유기골격체의 고습 환경에서 DIMP 흡착 성능 지속성 개선

Improving the DIMP Sorption Capacity Durability of Zirconium Based Metal-Organic Frameworks Coated with Polydimethylsiloxane at High Humidity

  • 장원형 (육군사관학교 핵.WMD방호연구센터) ;
  • 정상조 (육군사관학교 핵.WMD방호연구센터)
  • Jang, Wonhyeong (Nuclear & WMD Protection Research Center, Korea Military Academy) ;
  • Jeong, Sangjo (Nuclear & WMD Protection Research Center, Korea Military Academy)
  • 투고 : 2022.05.06
  • 심사 : 2022.05.23
  • 발행 : 2022.06.10

초록

UiO-66과 같은 지르코늄 기반 금속유기골격체(Zr-MOFs)는 비표면적이 넓고 선택적 흡착 능력이 뛰어나 전장환경에서 화학작용제 방호 물질로써 주목받고 있다. 하지만 대부분의 금속유기골격체는 약한 금속-유기 리간드 결합과 공극의 존재로 인하여 대기 중에 노출 시 물 분자와의 반응으로 선택적 흡착 성능이 저하되는 문제점이 있다. 이에 본 연구에서는 대표적인 소수성 고분자 물질인 폴리디메틸실록산(PDMS)을 지르코늄 기반 금속유기골격체인 UiO-66 표면에 코팅하였고, 전장환경에서 적용 가능성을 평가하기 위해 고습 환경에서 diisopropyl methylphosphonate (DIMP)와 같은 유사 화학작용제의 흡착 성능 지속성을 코팅 전과 비교하였다. PDMS를 코팅한 UiO-66의 표면 구조와 유기 작용기 분포를 분석한 결과 실리콘이 고르게 도포된 것을 확인하였으며, 접촉각을 측정한 결과 PDMS를 코팅한 UiO-66에서 30° 이상 접촉각이 증가하여 소수성이 증대한 것을 확인하였다. 또한 UiO-66과 PDMS를 코팅한 UiO-66을 흡착제로 사용하여 고습 환경에서 유사 화학작용제인 DIMP의 흡착 성능 지속성을 확인한 결과 PDMS를 코팅한 UiO-66가 기존의 UiO-66에 비하여 높은 DIMP 흡착 성능 지속성을 나타내는 것을 알 수 있었다.

Due to the fact that zirconium based metal-organic frameworks (Zr-MOFs), such as UiO-66, have a large specific surface area and excellent selective adsorption capacity, Zr-MOFs are gaining attention as materials that can provide protection from the attack of chemical warfare agents in battleground. However, most of the metal-organic frameworks have an issue of selective adsorption capacity degraded by water molecules when exposed to the atmosphere, because of the weak metal-organic ligand bonds and the presence of voids. Therefore, polydimethylsiloxane (PDMS), a representative hydrophobic polymer material, was coated on the surface of UiO-66 to enhance the sustainability of the diisopropyl methylphosphonate (DIMP) sorption capacity in the battleground condition. Through the analysis of surface structure and organic functional group distribution of PDMS coated UiO-66, silicon was confirmed to be evenly coated. The contact angle increased by over 30° for the PDMS coated UiO-66, indicating that the hydrophobicity was improved. In addition, both the UiO-66 and PDMS coated UiO-66 were used as adsorbents for DIMP, a similar chemical warfare agent, to investigate the durability of adsorption capacity in a high humidity environment. The PDMS coated UiO-66 showed higher durability of adsorption capacity for 20 days than that of pristine UiO-66.

키워드

과제정보

본 논문은 육군사관학교 핵·WMD 방호연구센터 2022년도(22-센터-1) 연구활동비 지원을 받아 연구되었습니다. 본 논문 작성에 필요한 분석 기회를 제공해준 서울과학기술대학교 공동실험실습관, 숙명여자대학교 공동기기실, 연세대학교 공동기기원 관계자들과 실험에 필요한 지원을 해준 이연희 님, 논문 작성에 도움을 주신 서울대학교 김진영 교수님에게 감사드립니다.

참고문헌

  1. H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999). https://doi.org/10.1038/46248
  2. X. Gong, K. Gnanasekaran, Z. Chen, L. Robison, M. C. Wasson, K. C. Bentz, S. M. Cohen, O. K. Farha, and N. C. Gianneschi, Insights into the structure and dynamics of metal-organic frameworks via transmission electron microscopy, J. Am. Chem. Soc., 142, 17224-17235 (2020). https://doi.org/10.1021/jacs.0c08773
  3. S. Yang, S. Nam, T. Kim, J. Im, H. Jung, J. Kang, S. Wi, B. Park, and C. Park, Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework, J. Am. Chem. Soc., 135, 7394-7397 (2013). https://doi.org/10.1021/ja311550t
  4. J. Kim, R. Balderas-Xicohtencatl, L. Zhang, S. Kang, M. Hirscher, H. Oh, and H. Moon, Exploiting diffusion barrier and chemical affinity of metal-organic frameworks for efficient hydrogen isotope separation, J. Am. Chem. Soc., 139, 15135-15141 (2017). https://doi.org/10.1021/jacs.7b07925
  5. H. Chen, K. Shen, Y. Tan, and Y. Li, Multishell hollow metal/nitrogen/carbon dodecahedrons with precisely controlled architectures and synergistically enhanced catalytic properties, ACS Nano, 13, 7800-7810 (2019). https://doi.org/10.1021/acsnano.9b01953
  6. Y. Liu, S. Moon, J. T. Hupp, and O. K. Farha, Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants, ACS Nano, 9, 12358-12364 (2015). https://doi.org/10.1021/acsnano.5b05660
  7. W. Jang, H. Kim, and S. Jeong, The characteristics of diisopropyl methylphosphonate adsorption on zirconium-based metal organic frameworks manufactured by using different acids as modulators, Appl. Chem. Eng., 32, 524-531 (2021). https://doi.org/10.14478/ACE.2021.1061
  8. H. Kim, J. Seo, H. Kim, S. Jeong, K. Baek, J. Kim, S. Min, S. Kim, and K. Jeong, Decomposition of the simulant 2-chloroethyl ethyl sulfide blister agent under ambient conditions using metal-organic frameworks, ACS Appl. Mater. Interfaces, 13, 3782-3792 (2021). https://doi.org/10.1021/acsami.0c17022
  9. J. M. Palomba, S. P. Harvey, M. Kalaj, B. R. Pimentel, J. B. DeCoste, G. W. Peterson, and S. M. Cohen, High-throughput screening of MOFs for breakdown of V-series nerve agents, ACS Appl. Mater. Interfaces, 12, 14672-14677 (2020). https://doi.org/10.1021/acsami.9b21693
  10. J. E. Mondloch, M. J. Katz, W. C. Isley, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp, and O. K. Farha, Destruction of chemical warfare agents using metal-organic frameworks, Nat. Mater., 14, 512-516 (2015). https://doi.org/10.1038/nmat4238
  11. Y. Kye, K. Jeong, and D. Kim, Recent trend in catalysis for degradation of toxic organophosphorus compounds, Appl. Chem. Eng., 30, 513-522 (2019). https://doi.org/10.14478/ACE.2019.1069
  12. X. Zhu, B. Li, J. Yang, Y. Li, W. Zhao, J. Shi, and J. Gu, Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67, ACS Appl. Mater. Interfaces, 7, 223-231 (2015). https://doi.org/10.1021/am5059074
  13. M. Kalaj, M. R. Momeni, K. C. Bentz, K. S. Barcus, J. M. Palomba, F. Paesani, and S. M. Cohen, Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation, Chem. Commun., 55, 3481-3484 (2019). https://doi.org/10.1039/c9cc00642g
  14. M. Kalaj, J. M. Palomba, K. C. Bentz, and S. M. Cohen, Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation, Chem. Commun., 55, 5367-5370 (2019). https://doi.org/10.1039/c9cc02252j
  15. D. Song, J. Bae, H. Ji, M. Kim, Y. Bae, K. Park, D. Moon, and N. Jeong, Coordinative reduction of metal nodes enhances the hydrolytic stability of a paddlewheel metal-organic framework, J. Am. Chem. Soc., 141, 7853-7864 (2019). https://doi.org/10.1021/jacs.9b02114
  16. T. Q. N. Tran, G. Das, and H. Yoon, Nickel-metal organic framework/MWCNT composite electrode for non-enzymatic urea detection, Sens. Actuators B Chem., 243, 78-83 (2017). https://doi.org/10.1016/j.snb.2016.11.126
  17. P. Kumar, K. Vellingiri, K. Kim, R. J. C. Brown, and M. J. Manos, Modern progress in metal-organic frameworks and their composites for diverse applications, Microporous Mesoporous Mater., 253, 251-265 (2017). https://doi.org/10.1016/j.micromeso.2017.07.003
  18. X. Zhang, X. Lv, X. Shi, Y. Yang, and Y. Yang, Enhanced hydrophobic UiO-66 (University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air, J. Colloid Interface Sci., 539, 152-160 (2019). https://doi.org/10.1016/j.jcis.2018.12.056
  19. C. Yang, U. Kaipa, Q. Z. Mather, X. Wang, V. Nesterov, A. F. Venero, and M. A. Omary, Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage, J. Am. Chem. Soc., 133, 18094-18097 (2011). https://doi.org/10.1021/ja208408n
  20. J. M. Taylor, R. Vaidhyanathan, S. S. Iremonger, and G. K. H. Shimizu, Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers, J. Am. Chem. Soc., 134, 14338-14340 (2012). https://doi.org/10.1021/ja306812r
  21. W. Zhang, Y. Hu, J. Ge, H.-L. Jiang, and S.-H. Yu, A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity, J. Am. Chem. Soc., 136, 16978-16981 (2014). https://doi.org/10.1021/ja509960n
  22. V. Singh, T. Guo, H. Xu, L. Wu, J. Gu, C. Wu, R. Gref, and J. Zhang, Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding, Chem. Commun., 53, 9246-9249 (2017). https://doi.org/10.1039/C7CC03471G
  23. N. Tian, Y. Gao, J. Wu, S. Luo, and W. Dai, Water-resistant HKUST-1 functionalized with polydimethylsiloxane for efficient rubidium ion capture, New J. Chem., 43, 15539-15547 (2019). https://doi.org/10.1039/c9nj03632f
  24. J. Kim, H. Hwang, D. Kang, and H. Kang, Physical characteristics of silicone modified epoxy as a undercoating materials, Polymer (Korea), 38, 371-377 (2014). https://doi.org/10.1016/S0032-3861(96)00503-4
  25. S. Han, K. Kim, J. Kim, S. Uhm, and Y. Kim, Hydrophobic polydimethylsiloxane thin films prepared by chemical vapor deposition: Application in water purification, Appl. Chem. Eng., 28, 1-7 (2017). https://doi.org/10.14478/ACE.2016.1129
  26. M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun., 49, 9449-9451 (2013). https://doi.org/10.1039/c3cc46105j
  27. E. Park, J. Sim, M. Jeong, H. Seo, and Y. Kim, Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles, RSC Adv., 3, 12571-12576 (2013). https://doi.org/10.1039/c3ra42402b
  28. Y. Cho, E. Park, and Y. Kim, Removal of oil by gelation using hydrophobic silica nanoparticles, J. Ind. Eng. Chem., 20, 1231-1235 (2014). https://doi.org/10.1016/j.jiec.2013.08.005
  29. S. Han, K. Kim, J. Kim, S. Uhm, and Y. Kim, Hydrophobic polydimethylsiloxane thin films prepared by chemical vapor deposition: Application in water purification, Appl. Chem. Eng., 28, 1-7 (2017). https://doi.org/10.14478/ACE.2016.1129
  30. E. Park, B. Kim, D. Park, S. Han, D. Kim, W. Yun, and Y. Kim, Fabrication of superhydrophobic thin films on various substrates using SiO2 nanoparticles coated with polydimethylsiloxane: towards the development of shielding layers for gas sensors, RSC Adv., 5, 40595-40602 (2015). https://doi.org/10.1039/C5RA05470B
  31. S. Kim, M. Seo, and S. Uhm, Study on the optimization of superhydrophobic coating for the durability of gas diffusion layer in alkaline fuel cells, Appl. Chem. Eng., 28, 691-695 (2017). https://doi.org/10.14478/ACE.2017.1091
  32. J. Lee, J. Kim, H. Kim, Y. Bae, K. Lee, and H. Cho, Effect of thermal treatment on the chemical resistance of polydimethylsiloxane for microfluidic devices, J. Micromech. Microeng., 23, 035007 (2013). https://doi.org/10.1088/0960-1317/23/3/035007
  33. X. Gao, R. Cui, G. Ji, and Z. Liu, Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy, Nanoscale, 10, 6205-6211 (2018). https://doi.org/10.1039/c7nr08892b
  34. R. Xu, Y. Kang, W. Zhang, X. Zhang, and B. Pan, Oriented UiO-67 metal-organic framework membrane with fast and selective lithium-ion transport, Angew. Chem. Int. Ed., 61, e202115443 (2022).
  35. M. Ding and H. Jiang, Improving water stability of metal-organic frameworks by a general surface hydrophobic polymerization, CCS Chem., 2, 2740-2748 (2020).