DOI QR코드

DOI QR Code

수질분석에 사용되는 qPCR기술

Utilization of qPCR Technology in Water Treatment

  • 김원재 (홍익대학교 화학공학과) ;
  • 황윤정 (홍익대학교 화학공학과) ;
  • 이민혜 (홍익대학교 화학공학과) ;
  • 정민섭 (홍익대학교 화학공학과)
  • Kim, Won Jae (Department of Chemical Engineering, Hongik University) ;
  • Hwang, Yunjung (Department of Chemical Engineering, Hongik University) ;
  • Lee, Minhye (Department of Chemical Engineering, Hongik University) ;
  • Chung, Minsub (Department of Chemical Engineering, Hongik University)
  • 투고 : 2022.05.06
  • 심사 : 2022.05.30
  • 발행 : 2022.06.10

초록

유엔이 발표한 세계 물개발 보고서는 2030년까지 식수가 현재보다 40% 감소할 것으로 전망하고 있다. 이는 물의 양이 감소하는 것이 아니라, 환경오염으로 인해 상수원이 오염되는 것을 말한다. 미생물이 수질에 깊은 연관이 있기 때문에 미생물의 분석은 수질관리에 매우 중요하다. 현재 미생물 분석에 사용되는 방법은 배양 후 현미경을 통한 모양과 형태를 분석하는 것이 가장 일반적이나, 유전자분석 기술이 발달함에 따라 현미경을 통한 미생물 분석 방식에 qPCR(quantitative polymerase chain reaction) 적용이 가능해졌고 활용방법 등이 연구되었다. 그 중에는 역전사 단계를 추가하여 RNA 분석에 용이성을 부여한 RT-qPCR법과 미생물 배양분석에 접목시켜 검사시간을 단축시키는 ICC-qPCR, 자연에서 채취한 샘플의 위양성율을 감소시키는 데 용이한 viability qPCR, 다중분석에 용이한 multiplex qPCR, 소량의 샘플만으로 분석이 가능한 microfluidic qPCR법 등이 있다. 본 논문에서는 이처럼 qPCR 방법이 미생물 분석에 적용되는 사례와 방식의 원리, 그리고 발전 방향에 대해 소개하고자 한다.

According to the World Water Development Report 2015 released by the United Nations, drinking water is expected to decrease by 40% by 2030. This does not mean that the amount of water decreases, but rather that the water source is contaminated due to environmental pollution. Because microbes are deeply related to water quality, the analysis of microbe is very important for water quality management. While the most common method currently used for microbial analysis is microscopic examination of the shape and feature after cell culture, as the gene analysis technology advances, quantitative polymerase chain reaction (qPCR) can be applied to the microscopic microbiological analysis, and the application method has been studied. Among them, a reverse transcription (RT) step enables the analysis of RNA by RT-PCR. Integrated cell culture (ICC)-qPCR shortens the test time by using it with microbial culture analysis, and viability qPCR can reduce the false positive errors of samples collected from natural water source. Multiplex qPCR for improved throughput, and microfluidic qPCR for analysis with limited amount of sample has been developed In this paper, we introduce the case, principle and development direction of the qPCR method applied to the analysis of microorganisms.

키워드

과제정보

이 논문은 중소벤처기업부의 재원으로 산학연 Collabo R&D 사업(S2911082), 과학기술정보통신부의 재원으로 한국연구재단(NRF-2021R1F1A1046822)의 지원을 받아 수행되었으며, 연구비 지원에 감사드립니다.

참고문헌

  1. World Water Assessment Programme, Water for a sustainable world, The United Nations World Water Development Report, 20-34, UNESCO, Paris, France (2015).
  2. World Water Assessment Programme, Wastewater: the untapped resource, The United Nations World Water Development Report, 12-18, UNESCO, Paris, France (2017).
  3. B. Jeon, J. Han, S.-K. Kim, J.-H. Ahn, H.-C. Oh, and H.-D. Park, An overview of problems cyanotoxins produced by cyanobacteria and the solutions thereby, J. Korean Soc. Environ. Eng., 37, 657-667 (2015). https://doi.org/10.4491/KSEE.2015.37.12.657
  4. J. Kim, J. Lim, and C. Lee, Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations, Biotechnol. Adv., 31, 1358-1373 (2013). https://doi.org/10.1016/j.biotechadv.2013.05.010
  5. J. Nestorov, G. Matic, I. Elakovic, and N. Tanic, Gene expression studies: How to obtain accurate and reliable data by quantitative real-time RT PCR, J. Med. Biochem., 32, 325-338 (2013). https://doi.org/10.2478/jomb-2014-0001
  6. H. Jung, B. Yim, S. Lim, B. Kim, B. Yoon, and O. Lee, Development of mcyB-specific ultra-rapid real-time PCR for quantitative detection of Microcystis aeruginosa, J. Korean Soc. Water Environ., 34, 46-56 (2018). https://doi.org/10.15681/KSWE.2017.34.1.46
  7. A. Moter and U. B. Gobel, Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms, J. Microbiol. Methods, 41, 85-112 (2000). https://doi.org/10.1016/S0167-7012(00)00152-4
  8. T. Narihiro and Y. Sekiguchi, Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea, Microbial Biotechnology, 4, 585-602 (2011). https://doi.org/10.1111/j.1751-7915.2010.00239.x
  9. Z. Zhou, J. Chen, H. Cao, P. Han, and J. D. Gu, Analysis of methane-producing and metabolizing archaeal and bacterial communities in sediments of the northern South China Sea and coastal Mai Po Nature Reserve revealed by PCR amplification of mcrA and pmoA genes, Frontiers in microbiology, 5, 789 (2015). https://doi.org/10.3389/fmicb.2014.00789
  10. C. A. Heid, J. Stevens, K. J. Livak, and P. M. Williams, Real time quantitative PCR, Genome Res., 6, 986-994 (1996). https://doi.org/10.1101/gr.6.10.986
  11. M. Tajadini, M. Panjehpour, and S. H. Javanmard, Comparison of SYBR Green and TaqMan methods in quantitative real-time polymerase chain reaction analysis of four adenosine receptor subtypes, Adv. Biomed. Res., 3, 85 (2014). https://doi.org/10.4103/2277-9175.127998
  12. Y. Cao, M. Yu, G. Dong, B. Chen, and B. Zhang, Digital PCR as an Emerging Tool for Monitoring of Microbial Biodegradation, Molecules, 25, 706 (2020). https://doi.org/10.3390/molecules25030706
  13. V. Kapoor, T. Pitkanen, H. Ryu, M. Elk, D. Wendell, and J. W. Santo Domingo, Distribution of human-specific bacteroidales and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA-and DNA-based quantitative PCR assays, Appl. Environ. Microbiol., 81, 91-99 (2015). https://doi.org/10.1128/AEM.02446-14
  14. L. Ogorzaly, H.-M. Cauchie, C. Penny, A. Perrin, C. Gantzer, and I. Bertrand, Two-day detection of infectious enteric and non-enteric adenoviruses by improved ICC-qPCR, Appl. Microbiol. Biotechnol., 97, 4159-4166 (2013). https://doi.org/10.1007/s00253-013-4782-4
  15. D. Li, A. Z. Gu, W. Yang, M. He, X. Hu, and H.-C. Shi, An integrated cell culture and reverse transcription quantitative PCR assay for detection of infectious rotaviruses in environmental waters, J. Microbiol. Methods, 82, 59-63 (2010). https://doi.org/10.1016/j.mimet.2010.04.003
  16. P. B. Gedalanga and B. H. Olson, Development of a quantitative PCR method to differentiate between viable and nonviable bacteria in environmental water samples, Appl. Microbiol. Biotechnol., 82, 587-596 (2009). https://doi.org/10.1007/s00253-008-1846-y
  17. Biotium, Viability PCR PMAxx and PMA Viablity PCR Dyes, accessed April 25, 2022 Retrieved from https://biotium.com/technology/pma-for-viability-pcr.
  18. A. Nocker, K. E. Sossa, and A. K. Camper, Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR, J. Microbiol. Methods, 70, 252-260 (2007). https://doi.org/10.1016/j.mimet.2007.04.014
  19. J. D. Oliver and R. Bockian, In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus, Appl. Environ. Microbiol., 61, 2620-2623 (1995). https://doi.org/10.1128/aem.61.7.2620-2623.1995
  20. L. Vondrakova, H. Turonova, V. Scholtz, J. Pazlarova, and K. Demnerova, Impact of various killing methods on EMA/PMA-qPCR efficacy, Food Control, 85, 23-28 (2018). https://doi.org/10.1016/j.foodcont.2017.09.013
  21. W. Ahmed, S. Payyappat, M. Cassidy, and C. Besley, A duplex PCR assay for the simultaneous quantification of Bacteroides HF183 and crAssphage CPQ_056 marker genes in untreated sewage and stormwater, Environ. Int., 126, 252-259 (2019). https://doi.org/10.1016/j.envint.2019.01.035
  22. N. Ramalingam, Z. Rui, H. B. Liu, C. C. Dai, R. Kaushik, B. Ratnaharika, and H. Q. Gong, Real-time PCR-based microfluidic array chip for simultaneous detection of multiple waterborne pathogens, Sensors Actuators B Chem., 145, 543-552 (2010). https://doi.org/10.1016/j.snb.2009.11.025
  23. S. Ishii, G. Kitamura, T. Segawa, A. Kobayashi, T. Miura, D. Sano, and S. Okabe, Microfluidic quantitative PCR for simultaneous quantification of multiple viruses in environmental water samples, Appl. Environ. Microbiol., 80, 7505-7511 (2014). https://doi.org/10.1128/AEM.02578-14
  24. S. L. Crane, J. Van Dorst, G. C. Hose, C. K. King, and B. C. Ferrari, Microfluidic qPCR enables high throughput quantification of microbial functional genes but requires strict curation of primers, Front. Environ. Sci., 6, 145 (2018). https://doi.org/10.3389/fenvs.2018.00145
  25. M. A. Borchardt, A. B. Boehm, M. Salit, S. K. Spencer, K. R. Wigginton, and R. T. Noble, The environmental microbiology minimum information (EMMI) guidelines: qPCR and dPCR quality and reporting for environmental microbiology, Environ. Sci. Technol., 55, 10210-10223 (2021). https://doi.org/10.1021/acs.est.1c01767