DOI QR코드

DOI QR Code

Experimental development of the epigenomic library construction method to elucidate the epigenetic diversity and causal relationship between epigenome and transcriptome at a single-cell level

  • Park, Kyunghyuk (Genomic Medicine Institute, Medical Research Center, Seoul National University) ;
  • Jeon, Min Chul (Genomic Medicine Institute, Medical Research Center, Seoul National University) ;
  • Kim, Bokyung (Department of Obstetrics and Gynecology, Seoul National University Hospital) ;
  • Cha, Bukyoung (Genomic Medicine Institute, Medical Research Center, Seoul National University) ;
  • Kim, Jong-Il (Genomic Medicine Institute, Medical Research Center, Seoul National University)
  • Received : 2021.11.26
  • Accepted : 2022.01.08
  • Published : 2022.03.31

Abstract

The method of single-cell RNA sequencing has been rapidly developed, and numerous experiments have been conducted over the past decade. Their results allow us to recognize various subpopulations and rare cell states in tissues, tumors, and immune systems that are previously unidentified, and guide us to understand fundamental biological processes that determine cell identity based on single-cell gene expression profiles. However, it is still challenging to understand the principle of comprehensive gene regulation that determines the cell fate only with transcriptome, a consequential output of the gene expression program. To elucidate the mechanisms related to the origin and maintenance of comprehensive single-cell transcriptome, we require a corresponding single-cell epigenome, which is a differentiated information of each cell with an identical genome. This review deals with the current development of single-cell epigenomic library construction methods, including multi-omics tools with crucial factors and additional requirements in the future focusing on DNA methylation, chromatin accessibility, and histone post-translational modifications. The study of cellular differentiation and the disease occurrence at a single-cell level has taken the first step with single-cell transcriptome and is now taking the next step with single-cell epigenome.

Keywords

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2020R1A6A1A03047972)

References

  1. Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 2018;13:599-604. https://doi.org/10.1038/nprot.2017.149
  2. Matula K, Rivello F, Huck WT. Single-cell analysis using froplet microfluidics. Adv Biosyst 2020;4:e1900188.
  3. Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017;357:661-667. https://doi.org/10.1126/science.aam8940
  4. Mondal T, Rasmussen M, Pandey GK, Isaksson A, Kanduri C. Characterization of the RNA content of chromatin. Genome Res 2010;20:899-907. https://doi.org/10.1101/gr.103473.109
  5. Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol 2016;17:72. https://doi.org/10.1186/s13059-016-0944-x
  6. Kelsey G, Stegle O, Reik W. Single-cell epigenomics: recording the past and predicting the future. Science 2017;358:69-75. https://doi.org/10.1126/science.aan6826
  7. Carter B, Zhao K. The epigenetic basis of cellular heterogeneity. Nat Rev Genet 2021;22:235-250. https://doi.org/10.1038/s41576-020-00300-0
  8. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 2010;28:1045-1048. https://doi.org/10.1038/nbt1010-1045
  9. Roadmap Epigenomics Consortium; Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317-330. https://doi.org/10.1038/nature14248
  10. Zhu C, Preissl S, Ren B. Single-cell multimodal omics: the power of many. Nat Methods 2020;17:11-14. https://doi.org/10.1038/s41592-019-0691-5
  11. Adey A, Morrison HG, Asan, Xun X, Kitzman JO, Turner EH, et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol 2010;11:R119. https://doi.org/10.1186/gb-2010-11-12-r119
  12. Adey A, Shendure J. Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res 2012;22:1139-1143. https://doi.org/10.1101/gr.136242.111
  13. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 2019;10:1930. https://doi.org/10.1038/s41467-019-09982-5
  14. Mulqueen RM, Pokholok D, Norberg SJ, Torkenczy KA, Fields AJ, Sun D, et al. Highly scalable generation of DNA methylation profiles in single cells. Nat Biotechnol 2018;36:428-431. https://doi.org/10.1038/nbt.4112
  15. Guo H, Zhu P, Guo F, Li X, Wu X, Fan X, et al. Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc 2015;10:645-659. https://doi.org/10.1038/nprot.2015.039
  16. Niemoller C, Wehrle J, Riba J, Claus R, Renz N, Rhein J, et al. Bisulfite-free epigenomics and genomics of single cells through methylation-sensitive restriction. Commun Biol 2021;4:153. https://doi.org/10.1038/s42003-021-01661-w
  17. Shareef SJ, Bevill SM, Raman AT, Aryee MJ, van Galen P, Hovestadt V, et al. Extended-representation bisulfite sequencing of gene regulatory elements in multiplexed samples and single cells. Nat Biotechnol 2021;39:1086-1094. https://doi.org/10.1038/s41587-021-00910-x
  18. Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 2015;348:910-914. https://doi.org/10.1126/science.aab1601
  19. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 2015;523:486-490. https://doi.org/10.1038/nature14590
  20. Lai B, Gao W, Cui K, Xie W, Tang Q, Jin W, et al. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature 2018;562:281-285. https://doi.org/10.1038/s41586-018-0567-3
  21. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 2015;33:1165-1172. https://doi.org/10.1038/nbt.3383
  22. Ku WL, Nakamura K, Gao W, Cui K, Hu G, Tang Q, et al. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification. Nat Methods 2019;16:323-325. https://doi.org/10.1038/s41592-019-0361-7
  23. Carter B, Ku WL, Kang JY, Hu G, Perrie J, Tang Q, et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat Commun 2019;10:3747. https://doi.org/10.1038/s41467-019-11559-1
  24. Harada A, Maehara K, Handa T, Arimura Y, Nogami J, Hayashi-Takanaka Y, et al. A chromatin integration labelling method enables epigenomic profiling with lower input. Nat Cell Biol 2019;21:287-296. https://doi.org/10.1038/s41556-018-0248-3
  25. Wang Q, Xiong H, Ai S, Yu X, Liu Y, Zhang J, et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol Cell 2019;76:206-216. https://doi.org/10.1016/j.molcel.2019.07.015
  26. Wu SJ, Furlan SN, Mihalas AB, Kaya-Okur HS, Feroze AH, Emerson SN, et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat Biotechnol 2021;39:819-824. https://doi.org/10.1038/s41587-021-00865-z
  27. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 2016;13:229-232. https://doi.org/10.1038/nmeth.3728
  28. Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C, et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun 2018;9:781. https://doi.org/10.1038/s41467-018-03149-4
  29. Yan R, Gu C, You D, Huang Z, Qian J, Yang Q, et al. Decoding dynamic epigenetic landscapes in human oocytes using single-cell multi-omics sequencing. Cell Stem Cell 2021;28:1641-1656. https://doi.org/10.1016/j.stem.2021.04.012
  30. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 2016;26:304-319. https://doi.org/10.1038/cr.2016.23
  31. Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 2018;361:1380-1385. https://doi.org/10.1126/science.aau0730
  32. Zhu C, Yu M, Huang H, Juric I, Abnousi A, Hu R, et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat Struct Mol Biol 2019;26:1063-1070. https://doi.org/10.1038/s41594-019-0323-x
  33. Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol 2019;37:1452-1457. https://doi.org/10.1038/s41587-019-0290-0
  34. de Mendoza A, Lister R, Bogdanovic O. Evolution of DNA methylome diversity in eukaryotes. J Mol Biol 2020;432:1687-1705. https://doi.org/10.1016/j.jmb.2019.11.003
  35. Zemach A, Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr Biol 2010;20:R780-R785. https://doi.org/10.1016/j.cub.2010.07.007
  36. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001;293:1089-1093. https://doi.org/10.1126/science.1063443
  37. Hajkova P. Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Philos Trans R Soc Lond B Biol Sci 2011;366:2266-2273. https://doi.org/10.1098/rstb.2011.0042
  38. Lee DS, Shin JY, Tonge PD, Puri MC, Lee S, Park H, et al. An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator. Nat Commun 2014;5:5619. https://doi.org/10.1038/ncomms6619
  39. Berdasco M, Esteller M. DNA methylation in stem cell renewal and multipotency. Stem Cell Res Ther 2011;2:42. https://doi.org/10.1186/scrt83
  40. Nishizawa M, Chonabayashi K, Nomura M, Tanaka A, Nakamura M, Inagaki A, et al. Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity. Cell Stem Cell 2016;19:341-354. https://doi.org/10.1016/j.stem.2016.06.019
  41. Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol 2019;20:249. https://doi.org/10.1186/s13059-019-1824-y
  42. Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med 2017;49:e322. https://doi.org/10.1038/emm.2017.10
  43. Levenson VV. DNA methylation as a universal biomarker. Expert Rev Mol Diagn 2010;10:481-488. https://doi.org/10.1586/erm.10.17
  44. Locke WJ, Guanzon D, Ma C, Liew YJ, Duesing KR, Fung KY, et al. DNA methylation cancer biomarkers: translation to the clinic. Front Genet 2019;10:1150. https://doi.org/10.3389/fgene.2019.01150
  45. Salas LA, Wiencke JK, Koestler DC, Zhang Z, Christensen BC, Kelsey KT. Tracing human stem cell lineage during development using DNA methylation. Genome Res 2018;28:1285-1295. https://doi.org/10.1101/gr.233213.117
  46. Kitamura E, Igarashi J, Morohashi A, Hida N, Oinuma T, Nemoto N, et al. Analysis of tissue-specific differentially methylated regions (TDMs) in humans. Genomics 2007;89:326-337. https://doi.org/10.1016/j.ygeno.2006.11.006
  47. Lokk K, Modhukur V, Rajashekar B, Martens K, Magi R, Kolde R, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol 2014;15:r54.
  48. Wan J, Oliver VF, Wang G, Zhu H, Zack DJ, Merbs SL, et al. Characterization of tissue-specific differential DNA methylation suggests distinct modes of positive and negative gene expression regulation. BMC Genomics 2015;16:49. https://doi.org/10.1186/s12864-015-1271-4
  49. Park K, Kim MY, Vickers M, Park JS, Hyun Y, Okamoto T, et al. DNA demethylation is initiated in the central cells of Arabidopsis and rice. Proc Natl Acad Sci U S A 2016;113:15138-15143. https://doi.org/10.1073/pnas.1619047114
  50. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 1992;89:1827-1831. https://doi.org/10.1073/pnas.89.5.1827
  51. Tanaka K, Okamoto A. Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett 2007;17:1912-1915. https://doi.org/10.1016/j.bmcl.2007.01.040
  52. Hong SR, Shin KJ. Bisulfite-converted DNA quantity evaluation: a multiplex quantitative real-time PCR system for evaluation of bisulfite conversion. Front Genet 2021;12:618955. https://doi.org/10.3389/fgene.2021.618955
  53. Vaisvila R, Ponnaluri VK, Sun Z, Langhorst BW, Saleh L, Guan S, et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res 2021;31:1280-1289. https://doi.org/10.1101/gr.266551.120
  54. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 2014;11:817-820. https://doi.org/10.1038/nmeth.3035
  55. Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 2017;12:534-547. https://doi.org/10.1038/nprot.2016.187
  56. Karemaker ID, Vermeulen M. Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol 2018;36:952-965. https://doi.org/10.1016/j.tibtech.2018.04.002
  57. Luo C, Rivkin A, Zhou J, Sandoval JP, Kurihara L, Lucero J, et al. Robust single-cell DNA methylome profiling with snmC-seq2. Nat Commun 2018;9:3824. https://doi.org/10.1038/s41467-018-06355-2
  58. Song L, Crawford GE. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc 2010;2010:pdb.prot5384. https://doi.org/10.1101/pdb.prot5384
  59. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 2013;10:1213-1218. https://doi.org/10.1038/nmeth.2688
  60. Jin W, Tang Q, Wan M, Cui K, Zhang Y, Ren G, et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 2015;528:142-146. https://doi.org/10.1038/nature15740
  61. Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD, Kohlway AS, et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat Biotechnol 2019;37:916-924. https://doi.org/10.1038/s41587-019-0147-6
  62. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 2008;132:887-898. https://doi.org/10.1016/j.cell.2008.02.022
  63. Janssen SM, Lorincz MC. Interplay between chromatin marks in development and disease. Nat Rev Genet 2022;23:137-153. https://doi.org/10.1038/s41576-021-00416-x
  64. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008;454:766-770. https://doi.org/10.1038/nature07107
  65. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007;448:553-560. https://doi.org/10.1038/nature06008
  66. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007;129:823-837. https://doi.org/10.1016/j.cell.2007.05.009
  67. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science 2007;316:1497-1502. https://doi.org/10.1126/science.1141319
  68. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 2007;4:651-657. https://doi.org/10.1038/nmeth1068
  69. Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT& Tag profiles histone modifications and transcription factors in complex tissues. Nat Biotechnol 2021;39:825-835. https://doi.org/10.1038/s41587-021-00869-9
  70. Escobar TM, Loyola A, Reinberg D. Parental nucleosome segregation and the inheritance of cellular identity. Nat Rev Genet 2021;22:379-392. https://doi.org/10.1038/s41576-020-00312-w
  71. Argelaguet R, Clark SJ, Mohammed H, Stapel LC, Krueger C, Kapourani CA, et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 2019;576:487-491. https://doi.org/10.1038/s41586-019-1825-8
  72. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 2019;566:496-502. https://doi.org/10.1038/s41586-019-0969-x
  73. Cao J, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, et al. A human cell atlas of fetal gene expression. Science 2020;370:eaba7721. https://doi.org/10.1126/science.aba7721
  74. Deng Y, Zhang D, Liu Y, Su G, Enninful A, Bai Z, et al. Spatial epigenome sequencing at tissue scale and cellular level. Preprint at https://www.biorxiv.org/content/10.1101/2021.03.11.434985v1 (2021).