DOI QR코드

DOI QR Code

Effect of thickness and reinforcement on concrete plates under high speed projectiles

  • Tais, Abdalla S. (Department of Civil Engineering, University of Tikrit) ;
  • Ibraheem, Omer F. (Department of Civil Engineering, University of Tikrit) ;
  • Raoof, Saad M. (Department of Civil Engineering, University of Tikrit)
  • 투고 : 2020.11.23
  • 심사 : 2022.02.23
  • 발행 : 2022.06.10

초록

Behavior of concrete elements under the effect of high-speed projectiles has gain increasing interest recently. It's necessary to understand how far the concrete can absorb the effect of bullets in order to save the occupants when design security and military infrastructures. This study presents a total of 18 concrete slabs casted and tested under reinforcement ratios, 0%, 0.35% and 0.7%. Parameters interested were slab thickness, (50 mm, 100 mm, and 150 mm) and type of weapon. All specimens tested to investigate their response under the effect of attacking by two common types of weapon. In general, it was found that projectile penetration was controlled by their thickness regardless the steel reinforcement ratio. However, the steel reinforcement controls the damage.

키워드

참고문헌

  1. Abadel, A., Abbas, H., Almusallam, T., Alsalloum, Y. and Siddiqui, N. (2017), "Local impact damage response of CFRP strengthened concrete slabs", Procedia Eng., 173, 85-92. https://doi.org/10.1016/j.proeng.2016.12.047.
  2. ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  3. Ansari, M. and Chakrabartia, A. (2016), "Behaviour of GFRP composite plate under ballistic impact: Experimental and FE analyses", Struct. Eng. Mech., 60(5), 829. http://doi.org/10.12989/sem.2016.60.5.829.
  4. Chen, C., Zhu, X., Hou, H., Zhang, L., Shen, X. and Tang, T. (2014), "An experimental study on the ballistic performance of FRP-steel plates completely penetrated by a hemispherical-nosed projectile", Steel Compos. Struct., 16(3), 269. http://doi.org/10.12989/scs.2014.16.3.269.
  5. Chen, X.W., Fan, S.C. and Li, Q.M. (2004), "Oblique and normal perforation of concrete targets by a rigid projectile", Int. J. Impact Eng., 30, 617-637. http://doi.org/10.1016/j.ijimpeng.2003.08.003.
  6. Dancygier, A.N. (2009), "Characteristics of high performance reinforced concrete barriers that resist non-deforming projectile impact", Struct. Eng. Mech., 32(5), 685. http://doi.org/10.12989/sem.2009.32.5.685.
  7. Dancygier, A.N., Yankelevsky, D.Z. and Jaegermann, C. (2007), "Response of high performance concrete plates to impact of non-deforming projectiles", Int. J. Impact Eng., 34, 1768-1779. http://doi.org/10.1016/j.ijimpeng.2006.09.094.
  8. Das, R. and Cleary, P.W. (2015), "Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact", Comput. Concrete, 16(6), 933. http://doi.org/10.12989/cac.2015.16.6.933.
  9. Forrestal, M.J., Frew, D.J. and Hanchak, S.J. (1996), "Penetration of grout and concrete targets with ogive-nose steel projectiles", Int. J. Impact Eng., 18(5), 465-476. https://doi.org/10.1016/0734-743X(95)00048-F.
  10. Frew, D.J., Forrestal, M.J. and Cargile, J.D. (2006), "The effect of concrete target diameter on projectile deceleration and penetration depth", Int. J. Impact Eng., 32, 584-1594. https://doi.org/10.1016/j.ijimpeng.2005.01.012.
  11. Gomes, J.T. and Shukla, A. (2001), "Multiple impact penetration of semi-infinite concrete", Int. J. Impact Eng., 25, 965-979. https://doi.org/10.1016/S0734-743X(01)00029-X.
  12. Gulkan, P. and Korucu, H. (2011), "High-velocity impact of large caliber tungsten projectiles on ordinary portland and calcium aluminate cement based HPSFRC and SIFCON slabs. Part I: numerical simulation and validation", Struct. Eng. Mech., 40(5), 595-615. http://doi.org/10.12989/sem.2011.40.5.595.
  13. He, L.L., Chen, X.W. and Xia, Y.M. (2014), "Representation of nose blunting of projectile into concrete target and two reduction suggestions", Int. J. Impact Eng., 74, 132-144. https://doi.org/10.1016/j.ijimpeng.2014.06.007.
  14. Heckotter, C. and Sievers, J. (2013), "Simulation of impact tests with hard, soft and liquid filled missiles on reinforced concrete structures", J. Appl. Mech., 80(3), 031805. https://doi.org/10.1115/1.4023391.
  15. Jankowiak, T., Rusinek, A., Kpenyigba, K.M. and Pesci, R. (2014), "Ballistic behavior of steel sheet subjected to impact and perforation", Steel Compos. Struct., 16(6), 595. http://doi.org/10.12989/scs.2014.16.6.595.
  16. Jhung, M.J. and Jeong, K.H. (2015), "Modal characteristics of partially perforated rectangular plate with triangular penetration pattern", Struct. Eng. Mech., 55(3), 583. https://doi.org/10.12989/sem.2015.55.3.583.
  17. Kravanja, S., Sovjak, R., Konrad, P. and Zatloukal, J. (2017), "Penetration resistance of semi-infinite UHPFRC targets with various fiber volume fractions against projectile impact", Procedia Eng., 193, 112-119. https://doi.org/10.1016/j.proeng.2017.06.193.
  18. Latif, Q.B., Abdul Rahman, I. and Zaidi, A.M. (2012b), Impact Energy of Hard Projectile for Local Damage of Concrete Slab: Penetration, Scabbing and Perforation of Concrete Slab-Impact Engineering, LAP LAMBERT Academic Publishing.
  19. Liu, H.F. and Ning, J.G. (2009), "Mechanical behavior of reinforced concrete subjected to impact loading", Mech. Mater., 41, 1298-1308. https://doi.org/10.1016/j.mechmat.2009.05.008.
  20. Pavlovic, A., Fragassa, C. and Disic, A. (2017), "Comparative numerical and experimental study of projectile impact on reinforced concrete", Compos. B. Eng., 108, 122-130. https://doi.org/10.1016/j.compositesb.2016.09.059.
  21. Poyer, J. (2006), The AK-47 and AK-74 Kalashnikov Rifles and their Variations: A Shooter's and Collector's Guide, North Cape Publications, P.8.
  22. Rosenberg, Z. and Dekel, E. (2009), "On the deep penetration and plate perforation by rigid projectiles", Int. J. Solid. Struct., 46, 4169-4180. https://doi.org/10.1016/j.ijsolstr.2009.07.027.
  23. Shan, Y., Huang, F.L. and Wu, H.J. (2014), "The influence of projectile material on mass abrasion of high-velocity penetrator", Proceedings of the 28th International Symposium on Ballistics, Atlanta.
  24. Siddiqui, N.A., Khateeb, B.M.A., Almusallam, T.H. (2014), "Reliability of double-wall containment against the impact of hard projectiles", Nucl. Eng., 270, 143-151. https://doi.org/10.1016/j.nucengdes.2014.01.003.
  25. Sovjak, R., Shanbhag, D., Konrad, P. and Zatloukal, J. (2017), "Response of thin UHPFRC targets with various fibre volume fractions to deformable projectile impact", Procedia Eng., 193, 3-10. https://doi.org/10.1016/j.proeng.2017.06.179.
  26. Sovjak, R., Vavrinik, T., Maca, P., Zatloukal, J., Konvalinka, P. and Song, Y. (2013), "Experimental investigation of ultra-high performance fiber reinforced concrete slabs subjected to deformable projectile impact", Procedia Eng., 65, 120-125. http://doi.org/10.1016/j.proeng.2013.09.021.
  27. Sun, W. and Yuan, J. (2012), "Penetration deep of non-deformable projectile into concrete targets", Adv. Mater. Res., 446, 3604-3608. https://doi.org/10.4028/www.scientific.net/AMR.446-449.3604.
  28. Wen, H.M., Yang, Y. and He, T. (2010), "Effects of abrasion on the penetration of ogive-nosed into concrete targets", Lat. Am. J. Solid. Struct., 7, 413-422. http://doi.org/10.1590/S1679-78252010000400003.
  29. Zhang, S., Wu, H., Zhang, X., Liu, J. and Huang, F. (2017), "High-velocity penetration of concrete targets with three types of projectiles: experiments and analysis", Lat. Am. J. Solid. Struct., 14, 1614-1628. http://doi.org/10.1590/1679-78253753.
  30. Zhao, X.X., Bao, M.A. and Hua, W.Z. (2018), "A theoretical model of rigid projectile perforation of concrete slabs using the energy method", Sci. China Technol. Sci., 61(5), 699-710. https://doi.org/10.1007/s11431-017-9183-1.