DOI QR코드

DOI QR Code

Development and performance of inorganic thixotropic backfill for shield TBM tail voids

무기질계 가소성 TBM 뒤채움재 개발 및 성능

  • 이성우 ((주)지오그린21) ;
  • 박진성 (동양대학교 시설안전공학과) ;
  • 유용선 ((주)케미우스코리아) ;
  • 최병훈 (서울시도시기반시설본부) ;
  • 정혁상 (동양대학교 철도건설안전공학과)
  • Received : 2022.03.22
  • Accepted : 2022.05.18
  • Published : 2022.05.31

Abstract

This paper contains experimental study for the development and performance of TBM backfill material with thixotropic properties. The LW backfill material is widely applied to fill the cavity on the back side of the shield TBM excavation, but has disadvantages such as settlement caused by strength reduction, material separation by groundwater, and reduced plasticity. In this paper, laboratory tests and a model test were conducted to assess the performance of inorganic thixotropic backfill material proposed to improve these problems. The results of laboratory tests show that 1 hr-uniaxial compressive strength of ITB was 12 times higher than LW, and the rate of bleeding of 20 hr was 8.3 times lower, and the result of flow table test was more than 27 times higher. This result indicated that the inorganic thixotropic backfill material has superior properties to LW backfill in terms of strength reduction, material separation, and thixotropy. In the model experiment, a model injection device tester was manufactured and the injection performance and filling rate were verified. When material was injected in the water, it was visually checked whether material separation occurred, and it was confirmed that the filling rate was 96% or more. Comparison results with the test of LW and ITB materials was concluded that ITB can reduce the material separation by groundwater and the occurrence of tunnel cavity.

본 논문에서는 가소성 특성을 지니는 TBM 뒤채움재의 개발과 성능을 연구하기 위하여 실험한 내용을 다루고 있다. 쉴드 TBM 굴진 시 배면을 충전하는 방법으로 현재 LW 뒤채움재를 사용해오고 있는데, LW 뒤채움재는 강도 저하로 인한 침하발생, 지하수에 의한 재료분리, 가소성 저하와 같은 단점을 가지고 있다. 이러한 문제점을 개선하기 위하여 개발한 무기질계 가소성 뒤채움재의 성능을 분석하기 위해 실내시험과 모형실험을 수행하였다. 실내시험 결과, 무기질계 가소성 뒤채움재는 LW 뒤채움재 대비 재령 1시간의 일축압축강도가 12배 이상 높게 나타났고 블리딩률은 8.3배 이상 낮게 측정되었으며 플로우 값은 27배 이상 높게 나타났다. 이러한 결과로 미루어볼 때 무기질계 가소성 뒤채움재가 강도 저하, 재료분리, 주입성면에서 LW보다 성능이 우수한 것으로 판단된다. 또한 충전 성능을 분석하기 위해 모형 주입장치 시험기를 제작하였고, 수중에서 재료분리 발생여부를 육안으로 확인하였으며, LW 뒤채움재보다 ITB의 충전율이 20% 이상 높게 나타났다. 이는 무기질계 가소성 뒤채움재가 지하수에 의한 재료분리를 방지하며, 터널의 공동 발생을 억제시킬 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2021년 전라남도와 전남테크노파크의 「전남 소재·부품·뿌리산업 연구개발대행원스톱 지원사업」 지원을 받아 수행된 연구임.

References

  1. Chun, B.S. (2011), Principles and Practice for Chemical Grouting, Goomibook, Seoul, pp. 116-120.
  2. Chun, B., Yang, H. (2006), "The effect of STPP on compressive strength of sodium silicate-cement grout", Journal of the Korean Geo-Environmental Society, Vol. 7, No. 4, pp. 25-34.
  3. Han, W., Lee, J.S., Byun, Y.H. (2018), Engineering properties of lightweight foaming grouting materials for underground cavities, Journal of the Korean Geo-Environmental Society, Vol. 19, No. 2, pp. 5-12.
  4. Japan Geotechnical Society (2012), Shield TBM Method, CIR, Seoul, pp. 3-7.
  5. JSCE (1996), Tunnel standard specification (shield construction method), Japanese Society of Civil Engineers, pp. 37-78.
  6. Kim, D.H., Jung, D.H., Jeong, G.H. (2009a), "Development of inorganic thixotropic-grout for backfilling of shield TBM tail voids and its compatibility", Journal of Korean Tunnelling and Underground Space Association, Vol. 11, No. 3, pp. 277-286. https://doi.org/10.9711/KTAJ.2009.11.3.277
  7. Kim, D.H., Sung, M.J., Jung, D.H. (2009b), "Determination of optimum mix proportion for inorganic thixotropic-grout", Proceedings of the Korean Society of Civil Engineers 2009 Regular Academic Conference, Hoengseong, pp. 2041-2044.
  8. Kim, H.M., Jang, K.J. (2011), "Evaluation of field application for the mix properties of the thixotropic grout", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 12, No. 9, pp. 4223-4238. https://doi.org/10.5762/KAIS.2011.12.9.4223
  9. Lee, B., Kim, Y., Chun, B. (2010), "Environmental impact review and improvement of durability of silicasolcement grout material", Journal of the Korean Geo-Environmental Society, Vol. 11, No. 12, pp. 13-18.
  10. Lee, H., Lee, J., Jung, K., Chun, B. (2011), "The durability of environmentally friendly inorganic grouting material (NDS)", Journal of the Korean Geo-Environmental Society, Vol. 12, No. 7, pp. 49-56. https://doi.org/10.14481/JKGES.2011.12.7.6
  11. MOLIT (2016), Tunnel design criteria TBM, Ministry of Land, Infrastructure and Transport, pp. 6-17.
  12. Ryu, Y.S. (2008), A study on environment-fiendly inorganic grouting materials with high durability, Master's Degree in Engineering, Hanyang University, University of Korea, pp. 1-2.
  13. Seo, D., Kim, H., Kim, K., Chun, B. (2010), "Engineering characteristics of plasticizer lightweight foamed concrete according to changes of mixing ratio", Journal of the Korean Geo-Environmental Society, Vol. 11, No. 4, pp. 33-42.
  14. Seoul Metropolitan Government (2006), Seoul Subway Line 7 extension (Onsu-Bupyeong-gu Office), Section 703 Construction.