DOI QR코드

DOI QR Code

B-SPLINE TIGHT FRAMELETS FOR SOLVING INTEGRAL ALGEBRAIC EQUATIONS WITH WEAKLY SINGULAR KERNELS

  • Shatnawi, Taqi A.M. (Department of Mathematics, Faculty of Science, The Hashemite University) ;
  • Shatanawi, Wasfi (Department of Mathematics and Sciences, College of Humanities and Sciences Prince Sultan University)
  • 투고 : 2021.11.17
  • 심사 : 2021.12.23
  • 발행 : 2022.06.08

초록

In this paper, we carried out a new numerical approach for solving integral algebraic equations with weakly singular kernels. The novel method is based on the construction of B-spline tight framelets using the unitary and oblique extension principles. Some numerical examples are given to provide further explanation and validation of our method. The result of this study introduces a new technique for solving weakly singular integral algebraic equation and thus in turn will contribute to providing new insight into approximation solutions for integral algebraic equation (IAE).

키워드

과제정보

The authors would like to thank the reviewers for their valuable comments.

참고문헌

  1. Y. Al-Jarrah, On the approximation solutions of linear and nonlinear Volterra integral equation of first and second kinds by using B-spline tight framelets generated by unitary extension principle and oblique extension principle, Inter. J. Diff. Equ., 15(2) (2020), 165-189.
  2. G. Birkhoff and C. Boor, Piecewise polynomial interpolation and approximation, Approximation of functions, Elsevier Publishing Company, Amsterdam, (1965), 164-190.
  3. C. Boor, A Practical Guide to Splines: Applied Mathematical Sciences,1st ed., Springer-Verlag, New York, 1994.
  4. H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, 1st ed., Cambridge University Press, 2004.
  5. H. Brunner and M. Bulatov,On singular systems of integral equations with weakly singular kernels, In: Proceeding 11-th Baikal International School Seminar, (1998), 64-67.
  6. M. Bulatov and V. Chistyakov, The properties of differential-algebraic systems and their integral analogs, Memorial University of Newfoundland, 1997.
  7. M. Bulatov, P. Lima and E. Weinmuller, Existence and uniqueness of solutions to weakly singular integral-algebraic and integro-differential equations, Open Math., 12(2) (2014), 308-321. https://doi.org/10.2478/s11533-013-0334-5
  8. Y. Chen and T. Tang, Convergence analysis of the Jacobi spectral collocation methods for Volterra integral equations with a weakly singular kernel, Mathematics of Computation,79 (2010), 147-167. https://doi.org/10.1090/S0025-5718-09-02269-8
  9. C. Chui and W. He, J. Stckler, Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmo. Anal., 13(3) (2002), 224-262. https://doi.org/10.1016/S1063-5203(02)00510-9
  10. I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commu. Pure Appl. Math., 57(11) (2004), 1413-1457. https://doi.org/10.1002/cpa.20042
  11. I. Daubechies, B. Han, A. Ron and Z. Shen,Framelets: MRA-based constructions of wavelet frames, Appl. Comput Harmo. Anal., 14(1) (2003), 1-46. https://doi.org/10.1016/S1063-5203(02)00511-0
  12. B. Dong and Z. Shen, MRA-Based Wavelet Frames and Application, IAS Lecture Note Series, 2013.
  13. N. Dyn and A. Ron, Recurrence relations for Tchebycheffian B-splines, J.l d'Analyse Math., 51 (1988), 118-138. https://doi.org/10.1007/BF02791121
  14. C. Gear, Differential algebraic equations, indices, and integral algebraic equations,SIAM J. Numer. Anal., 27(6) (1990), 1527-1534. https://doi.org/10.1137/0727089
  15. M. Hadizadeh, F. Ghoreishi and S. Pishbin, Jacobi spectral solution for integral equation of index-2, Appl. Numer. Math., 61(1) (2011), 131-148. https://doi.org/10.1016/j.apnum.2010.08.009
  16. T. He, Eulerian polynomials and B-splines, J. Comput. Appl. Math., 236(15) (2012), 3763-3773. https://doi.org/10.1016/j.cam.2011.10.013
  17. B. Jumarhon, W. Lamb, S. McKee and T. Tang, A Volterra integral type method for solving a class of nonlinear initial-boundary value problems, Numer. Methodsr Par. Diff. Equ., 12(2) (1996), 265-281. https://doi.org/10.1002/(SICI)1098-2426(199603)12:2<265::AID-NUM8>3.0.CO;2-O
  18. M. Mohammad and E. Lin,Gibbs Phenomenon in Tight Framelet Expansions, Commu. Nonlinear Scie. Numer. Simul., 55 (2018), 84-92. https://doi.org/10.1016/j.cnsns.2017.06.029
  19. S. Pishbin, F. Ghoreishi and M. Hadizadeh, The semi-explicit Volterra integral algebraic equations with weakly singular kernels: The numerical treatments, J. Comput. Appl. Math., 245 (2013), 121-132. https://doi.org/10.1016/j.cam.2012.12.012
  20. L. Schumaker, Spline Functions: Basic Theory, 33rd eds., Cambridge University Press, New York, 2007.
  21. L. Wolfersdorf, On identification of memory kernel in linear theory of heat conduction, Math.l Meth. Applied Sci., 17(12) (1994), 919-932. https://doi.org/10.1002/mma.1670171202
  22. C. Zoppou, S. Roberts and R.J. Renka, Exponential spline interpolation in characteristic based scheme for solving the advective-diffusion equation, Inter. J. Nume. Meth. Fluids, 33(3) (2000), 429-452. https://doi.org/10.1002/1097-0363(20000615)33:3<429::AID-FLD60>3.0.CO;2-1