과제정보
The authors would like to thank the reviewers for their valuable comments.
참고문헌
- Y. Al-Jarrah, On the approximation solutions of linear and nonlinear Volterra integral equation of first and second kinds by using B-spline tight framelets generated by unitary extension principle and oblique extension principle, Inter. J. Diff. Equ., 15(2) (2020), 165-189.
- G. Birkhoff and C. Boor, Piecewise polynomial interpolation and approximation, Approximation of functions, Elsevier Publishing Company, Amsterdam, (1965), 164-190.
- C. Boor, A Practical Guide to Splines: Applied Mathematical Sciences,1st ed., Springer-Verlag, New York, 1994.
- H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, 1st ed., Cambridge University Press, 2004.
- H. Brunner and M. Bulatov,On singular systems of integral equations with weakly singular kernels, In: Proceeding 11-th Baikal International School Seminar, (1998), 64-67.
- M. Bulatov and V. Chistyakov, The properties of differential-algebraic systems and their integral analogs, Memorial University of Newfoundland, 1997.
- M. Bulatov, P. Lima and E. Weinmuller, Existence and uniqueness of solutions to weakly singular integral-algebraic and integro-differential equations, Open Math., 12(2) (2014), 308-321. https://doi.org/10.2478/s11533-013-0334-5
- Y. Chen and T. Tang, Convergence analysis of the Jacobi spectral collocation methods for Volterra integral equations with a weakly singular kernel, Mathematics of Computation,79 (2010), 147-167. https://doi.org/10.1090/S0025-5718-09-02269-8
- C. Chui and W. He, J. Stckler, Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmo. Anal., 13(3) (2002), 224-262. https://doi.org/10.1016/S1063-5203(02)00510-9
- I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commu. Pure Appl. Math., 57(11) (2004), 1413-1457. https://doi.org/10.1002/cpa.20042
- I. Daubechies, B. Han, A. Ron and Z. Shen,Framelets: MRA-based constructions of wavelet frames, Appl. Comput Harmo. Anal., 14(1) (2003), 1-46. https://doi.org/10.1016/S1063-5203(02)00511-0
- B. Dong and Z. Shen, MRA-Based Wavelet Frames and Application, IAS Lecture Note Series, 2013.
- N. Dyn and A. Ron, Recurrence relations for Tchebycheffian B-splines, J.l d'Analyse Math., 51 (1988), 118-138. https://doi.org/10.1007/BF02791121
- C. Gear, Differential algebraic equations, indices, and integral algebraic equations,SIAM J. Numer. Anal., 27(6) (1990), 1527-1534. https://doi.org/10.1137/0727089
- M. Hadizadeh, F. Ghoreishi and S. Pishbin, Jacobi spectral solution for integral equation of index-2, Appl. Numer. Math., 61(1) (2011), 131-148. https://doi.org/10.1016/j.apnum.2010.08.009
- T. He, Eulerian polynomials and B-splines, J. Comput. Appl. Math., 236(15) (2012), 3763-3773. https://doi.org/10.1016/j.cam.2011.10.013
- B. Jumarhon, W. Lamb, S. McKee and T. Tang, A Volterra integral type method for solving a class of nonlinear initial-boundary value problems, Numer. Methodsr Par. Diff. Equ., 12(2) (1996), 265-281. https://doi.org/10.1002/(SICI)1098-2426(199603)12:2<265::AID-NUM8>3.0.CO;2-O
- M. Mohammad and E. Lin,Gibbs Phenomenon in Tight Framelet Expansions, Commu. Nonlinear Scie. Numer. Simul., 55 (2018), 84-92. https://doi.org/10.1016/j.cnsns.2017.06.029
- S. Pishbin, F. Ghoreishi and M. Hadizadeh, The semi-explicit Volterra integral algebraic equations with weakly singular kernels: The numerical treatments, J. Comput. Appl. Math., 245 (2013), 121-132. https://doi.org/10.1016/j.cam.2012.12.012
- L. Schumaker, Spline Functions: Basic Theory, 33rd eds., Cambridge University Press, New York, 2007.
- L. Wolfersdorf, On identification of memory kernel in linear theory of heat conduction, Math.l Meth. Applied Sci., 17(12) (1994), 919-932. https://doi.org/10.1002/mma.1670171202
- C. Zoppou, S. Roberts and R.J. Renka, Exponential spline interpolation in characteristic based scheme for solving the advective-diffusion equation, Inter. J. Nume. Meth. Fluids, 33(3) (2000), 429-452. https://doi.org/10.1002/1097-0363(20000615)33:3<429::AID-FLD60>3.0.CO;2-1