DOI QR코드

DOI QR Code

THE ZERO-DIVISOR GRAPHS OF ℤ(+)ℤn AND (ℤ(+)ℤn)[X]]

  • PARK, MIN JI (Department of Mathematics, College of Life Science and Nano Technology, Hannam University) ;
  • JEONG, JONG WON (School of Mathematics, Kyungpook National University) ;
  • LIM, JUNG WOOK (Department of Mathematics, College of Natural Sciences, Kyungpook National University) ;
  • BAE, JIN WON (Department of Mathematics, College of Natural Sciences, Kyungpook National University)
  • Received : 2022.03.03
  • Accepted : 2022.04.28
  • Published : 2022.05.30

Abstract

Let ℤ be the ring of integers and let ℤn be the ring of integers modulo n. Let ℤ(+)ℤn be the idealization of ℤn in ℤ and let (ℤ(+)ℤn)[X]] be either (ℤ(+)ℤn)[X] or (ℤ(+)ℤn)[[X]]. In this article, we study the zero-divisor graphs of ℤ(+)ℤn and (ℤ(+)ℤn)[X]]. More precisely, we completely characterize the diameter and the girth of the zero-divisor graphs of ℤ(+)ℤn and (ℤ(+)ℤn)[X]]. We also calculate the chromatic number of the zero-divisor graphs of ℤ(+)ℤn and (ℤ(+)ℤn)[X]].

Keywords

References

  1. D.F. Anderson, M.C. Axtell, and J.A. Stickles, Jr, Zero-divisor graphs in commutative rings, in: M. Fontana et al. (Eds), Commutative Algebra: Noetherian and Non-Noetherian Perspectives, Springer, New York, 2011, pp. 23-45.
  2. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. https://doi.org/10.1006/jabr.1998.7840
  3. D.D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993), 500-514. https://doi.org/10.1006/jabr.1993.1171
  4. D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
  5. M. Axtell and J. Stickles, Zero-divisor graphs of idealizations, J. Pure Appl. Algebra 204 (2006), 235-243. https://doi.org/10.1016/j.jpaa.2005.04.004
  6. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
  7. D.E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27 (1971), 427-433. https://doi.org/10.1090/S0002-9939-1971-0271100-6
  8. J.A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York and Basel, 1988.
  9. J.W. Lim and D.Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218 (2014), 1075-1080. https://doi.org/10.1016/j.jpaa.2013.11.003
  10. N.H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094
  11. S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), 3533-3558. https://doi.org/10.1081/AGB-120004502
  12. M.J. Park, E.S. Kim, and J.W. Lim, The zero-divisor graph of ℤn[X]], Kyungpook Math. J. 60 (2020), 723-729. https://doi.org/10.5666/KMJ.2020.60.4.723
  13. S.J. Pi, S.H. Kim, and J.W. Lim, The zero-divisor graph of the ring of integers modulo n, Kyungpook Math. J. 59 (2019), 591-601. https://doi.org/10.5666/KMJ.2019.59.4.591
  14. D.B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, Upper Saddle River, NJ, 2001.