References
- M. Baronti and P. Papini, Convergence of sequences of sets, In: Methods of functional analysis in approximation theory, ISNM, 76, Birkhauser-Verlag, Basel, 1986.
- R. Colak, Statistical convergence of order α, Modern methods in Analysis and its Applications, New Delhi, India, Anamaya Pub., 121-129, 2010.
- P. Das, E. Savas and S.K. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Letters 24 (2011), 1509-1514. https://doi.org/10.1016/j.aml.2011.03.036
- E. Dundar and N.P. Akin, Wijsman regularly ideal convergence of double sequences of sets, J. Intel. Fuzzy Syst. 37 (2019), 8159-8166. https://doi.org/10.3233/JIFS-190626
- E. Dundar and N. Pancaroglu, Wijsman lacunary ideal invariant convergence of double sequences of sets, Honam Math. J. 42 (2020), 345-358. https://doi.org/10.5831/HMJ.2020.42.2.345
- A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci. 9 (2015), 2529-2534.
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
- A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981), 293-305. https://doi.org/10.2140/pjm.1981.95.293
- J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313. https://doi.org/10.1524/anly.1985.5.4.301
-
M. Gurdal and M.B. Huban,
$\mathcal{I}$ -limit points in random 2-normed spaces, Theory Appl. Math. Comput. Sci. 2 (2012), 15-22. - M. Gurdal, M.B. Huban and U. Yamanci, On generalized statistical limit points in random 2-normed spaces, AIP Conf. Proc. 1479 (2012), 950-954.
-
M. Gurdal and M.B. Huban, On
$\mathcal{I}$ -convergence of double sequences in the topology induced by random 2-norms, Mat. Vesnik 66 (2014), 73-83. -
M. Gurdal and A. Sahiner, Extremal
$\mathcal{I}$ -limit points of double sequences, Appl. Math. E-Notes 8 (2008), 131-137. - O. Kisi and F. Nuray, A new convergence for sequences of sets, Abstr. Appl. Anal. 2013 (2013), 6 pages.
-
P. Kostyrko, T. Salat and W. Wilczynski,
$\mathcal{I}$ -convergence, Real Anal. Exchange 26 (2000-01), 669-685. https://doi.org/10.2307/44154069 -
P. Kostyrko, M. Macaj, T. Sal'at and M. Sleziak,
$\mathcal{I}$ -convergence and extremal$\mathcal{I}$ -limit points, Math. Slovaca 55 (2005), 443-464. - S.A. Mohiuddine and B.A.S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (2019), 1955-1973. https://doi.org/10.1007/s13398-018-0591-z
-
A. Nabiev, S. Pehlivan and M. Gurdal, On
$\mathcal{I}$ -Cauchy sequences, Taiwanese J. Math. 11 (2007), 569-576. https://doi.org/10.11650/twjm/1500404709 - A.A. Nabiev, E. Savas and M. Gurdal, Statistically localized sequences in metric spaces, J. Appl. Anal. Comput. 9 (2019), 739-746.
-
A.A. Nabiev, E. Savas and M. Gurdal,
$\mathcal{I}$ -localized sequences in metric spaces, Facta Univ. Ser. Math. Inf. 35 (2020), 459-469. - F. Nuray, R.F. Patterson and E. Dundar, Asymptotically lacunary statistical equivalence of double sequences of sets, Demonstratio Math. 49 (2016), 183-196. https://doi.org/10.1515/dema-2016-0016
- F. Nuray and B.E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87-99.
- F. Nuray, U. Ulusu and E. Dundar, Lacunary statistical convergence of double sequences of sets, Soft Comput. 20 (2016), 2883-2888. https://doi.org/10.1007/s00500-015-1691-8
-
N. Pancaroglu, E. Dundar and F. Nuray, Wijsman
$\mathcal{I}$ -invariant convergence of sequences of sets, Bull. Math. Anal. Appl. 11 (2019), 1-9. - M.M. Rao and Z.D. Ren, Applications of Orlicz spaces, Marcel Dekker Inc., 2002.
- T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
-
E. Savas, On
$\mathcal{I}$ -lacunary statistical convergence of order α for sequences of sets, Filomat 29 (2015), 1223-1229. https://doi.org/10.2298/FIL1506223S -
E. Savas, On
$\mathcal{I}$ -lacunary statistical convergence of weight g for sequences of sets, Filomat 31 (2017), 5315-5322. https://doi.org/10.2298/FIL1716315S - E. Savas and P. Das, A generalized statistical convergence via ideals, Appl. Math. Letters 24 (2011), 826-830. https://doi.org/10.1016/j.aml.2010.12.022
- E. Savas and S. Debnath, Lacunary statistically ϕ-convergence, Note Mat. 39 (2019), 111-119.
-
R. Savas, Multiple λµ-statistically convergence via
$\tilde{\phi}$ -functions, Math. Meth. Appl. Sci. (2020), 1-8. https://doi.org/10.1002/(SICI)1099-1476(19960110)19:1<1::AID-MMA756>3.0.CO;2-J -
N. Subramanian and A. Esi, Wijsman rough lacunary statistical convergence on
$\mathcal{I}$ -Cesaro triple sequences, Internat. J. Anal. Appl. 16 (2018), 643-653. - A. Sahiner, M. Gurdal and F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math. 8 (2007), 49-55.
- A. Sahiner, M. Gurdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (2007), 1477-1484. https://doi.org/10.11650/twjm/1500404879
-
A. Sahiner and B. C. Tripathy, Some
$\mathcal{I}$ -related properties of triple sequences, Selcuk J. Appl. Math. 9 (2008), 9-18. -
S. Tortop and E. Dundar, Wijsman
$\mathcal{I}_2$ -invariant convergence of double sequences of sets, J. Ineq. Special Func. 9 (2018), 90-100. -
U. Ulusu and E. Dundar,
$\mathcal{I}$ -lacunary statistical convergence of sequences of sets, Filomat 28 (2014), 1567-1574. https://doi.org/10.2298/FIL1408567U -
U. Ulusu and E. Dundar, Asymptotically
$\mathcal{I}_2$ -lacunary statistical equivalence of double sequences of sets, J. Ineq. Special Func. 7 (2016), 44-56. - U. Ulusu and F. Nuray, Lacunary statistical convergence of sequence of sets, Progress Appl. Math. 4 (2012), 99-109.
- U. Ulusu and F. Nuray, On strongly lacunary summability of sequences of sets, J. Appl. Math. Bioinform. 3 (2013), 75-88.
-
U. Yamanci and M. Gurdal,
$\mathcal{I}$ -statistical convergence in 2-normed space, Arab J. Math. Sci. 20 (2014), 41-47. https://doi.org/10.1016/j.ajmsc.2013.03.001 - R.A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70 (1964), 186-188. https://doi.org/10.1090/S0002-9904-1964-11072-7
- R.A. Wijsman, Convergence of Sequences of Convex sets, Cones and Functions II, Trans. Amer. Math. Soc. 123 (1966), 32-45. https://doi.org/10.1090/S0002-9947-1966-0196599-8