DOI QR코드

DOI QR Code

ROUGH ${\Delta}{\mathcal{I}}$-STATISTICAL CONVERGENCE

  • KISI, OMER (Department of Mathematics, Faculty of Science, Bartin University) ;
  • DUNDAR, ERDINC (Department of Mathematics, Afyon Kocatepe University)
  • Received : 2021.06.14
  • Accepted : 2021.07.19
  • Published : 2022.05.30

Abstract

In this study, we examine rough ${\Delta}\mathcal{I}$-statistical convergence for difference sequences as an extension of rough convergence. We investigate the set of rough ${\Delta}\mathcal{I}$-statistical limit points of a difference sequence and analyze the results with proofs.

Keywords

References

  1. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  2. C. Belen and S.A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. Comput. 219 (2013), 9821-9826. https://doi.org/10.1016/j.amc.2013.03.115
  3. U. Kadak and S.A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which includes the (p,q)-Gamma function and related approximation theorems, Results Math. 73 (2018), 1-31. https://doi.org/10.1007/s00025-018-0773-1
  4. S.A. Mohiuddine and B.A.S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Math. 113 (2019), 1955-1973. https://doi.org/10.1007/s13398-018-0591-z
  5. S.A. Mohiuddine, A. Asiri and B. Hazarika, Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst. 48 (2019), 492-506. https://doi.org/10.1080/03081079.2019.1608985
  6. S.A. Mohiuddine, B. Hazarika and M.A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat 33 (2019), 4549-4560. https://doi.org/10.2298/fil1914549m
  7. S.A. Mohiuddine, B. Hazarika and A. Alotaibi, On statistical convergence of double sequences of fuzzy valued functions, J. Intell. Fuzzy Syst. 32 (2017), 4331-4342. https://doi.org/10.3233/JIFS-16974
  8. B. Hazarika, A. Alotaibi and S.A. Mohiuddine, Statistical convergence in measure for double sequences of fuzzy-valued functions, Soft Computing 24 (2020), 6613-6622. https://doi.org/10.1007/s00500-020-04805-y
  9. P. Kostyrko, T. Salat and W. Wilczynski, $\mathcal{I}$-convergence, Real Anal. Exchange 26 (2000), 669-686. https://doi.org/10.2307/44154069
  10. P. Kostyrko, M. Macaj, T. Salat and M. Sleziak, $\mathcal{I}$-convergence and extremal $\mathcal{I}$-limit points, Math. Slovaca 55 (2005), 443-464.
  11. E. Savas and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826-830. https://doi.org/10.1016/j.aml.2010.12.022
  12. S. Debnath and J. Debnath, On $\mathcal{I}$-statistically convergent sequence spaces defined by sequences of Orlicz functions using matrix transformation, Proyecciones 33 (2014), 277-285. https://doi.org/10.4067/s0716-09172014000300004
  13. M. Et, A. Alotaibi and S.A. Mohiuddine, On $({\Delta}^m-\mathcal{I})$-statistical convergence of order α, Sci. World J. Article ID 535419 (2014), 5 pages.
  14. E. Savas and M. Gurdal, $\mathcal{I}$-statistical convergence in probabilistic normed spaces, Sci. Bull. A: Appl. Math. Phys. 77 (2015), 195-204.
  15. M. Mohiuddine and B. Hazarika, Some classes of ideal convergent sequences and generalized difference matrix operator, Filomat 31 (2017), 1827-1834. https://doi.org/10.2298/FIL1706827M
  16. M. Mursaleen, S.A. Mohiuddine and O.H.H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl. 59 (2010), 603-611. https://doi.org/10.1016/j.camwa.2009.11.002
  17. M. Mursaleen and A. Alotaibi, On $\mathcal{I}$-convergence in random 2-normed spaces, Math. Slovaca 61 (2011), 933-940. https://doi.org/10.2478/s12175-011-0059-5
  18. M. Mursaleen and S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62 (2012), 49-62. https://doi.org/10.2478/s12175-011-0071-9
  19. M. Mursaleen and S.A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports 12 (2010), 359-371.
  20. M. Mursaleen, S. Debnath, D. Rakshit, $\mathcal{I}$-statistical limit superior and $\mathcal{I}$-statistical limit inferior, Filomat 31 (2017), 2103-2108. https://doi.org/10.2298/FIL1707103M
  21. M. Gurdal and M.B. Huban, On $\mathcal{I}$-convergence of double sequences in the topology induced by random 2-norms, Math. Vesnik 66 (2014), 73-83.
  22. M. Gurdal and A. Sahiner, Extremal $\mathcal{I}$-limit points of double sequences, Appl. Math. E-Notes 8 (2008), 131-137.
  23. E. Savas and M. Gurdal, Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Systems 27 (2014), 1621-1629. https://doi.org/10.3233/IFS-141128
  24. E. Savas and M. Gurdal, A generalized statistical convergence in intuitionistic fuzzy normed spaces, Science Asia 41 (2015), 289-294. https://doi.org/10.2306/scienceasia1513-1874.2015.41.289
  25. F. Nuray and W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513-527. https://doi.org/10.1006/jmaa.2000.6778
  26. H.X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim. 22 (2001), 199-222. https://doi.org/10.1081/NFA-100103794
  27. H.X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optim. 23 (2002), 139-146. https://doi.org/10.1081/NFA-120003675
  28. H.X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optim. 24 (2003), 285-301. https://doi.org/10.1081/NFA-120022923
  29. S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optim. 29 (2008), 291-303. https://doi.org/10.1080/01630560802001064
  30. S. Aytar, The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optim. 29 (2008), 283-290. https://doi.org/10.1080/01630560802001056
  31. S.K. Pal, D. Chandra and S. Dutta, Rough ideal convergence, Hacet. J. Math. Stat. 42 (2013), 633-640.
  32. E. Dundar and C. Cakan, Rough $\mathcal{I}$-convergence, Gulf J. Math. 2 (2014), 45-51.
  33. E. Dundar and C. Cakan, Rough convergence of double sequences, Demonstr. Math. 47 (2014), 638-651. https://doi.org/10.2478/dema-2014-0051
  34. E. Dundar, On Rough $\mathcal{I}_2$-convergence, Numer. Funct. Anal. Optim. 37 (2016), 480-491. https://doi.org/10.1080/01630563.2015.1136326
  35. E. Savas, S. Debnath and D. Rakshit, On $\mathcal{I}$-statistically rough convergence, Publ. de l'Institut Math. 105 (2019), 145-150. https://doi.org/10.2298/pim1919145s
  36. P. Malik, M. Maity and A. Ghosh, Rough $\mathcal{I}$-statistical convergence of sequences, arXiv:1611.03224.
  37. M. Arslan, E. Dundar, Rough convergence in 2-normed spaces, Bull. Math. Anal. Appl. 10 (2018), 1-9.
  38. M. Arslan, E. Dundar, On rough convergence in 2-normed spaces and some properties, Filomat 33 (2019), 5077-5086. https://doi.org/10.2298/fil1916077a
  39. N. Demir and H. Gumus, Rough statistical convergence for difference sequences, Kragujevac J. Math. 46 (2022), 733-742. https://doi.org/10.46793/KgJMat2205.733D
  40. N. Demir and H. Gumus, Rough convergence for difference sequences, New Trends Math. Sci. 2 (2020), 22-28. https://doi.org/10.20852/ntmsci.2020.402
  41. H. Gumus and N. Demir, Rough $\mathcal{I}$ convergence, Konuralp J. Math. 9 (2021), 209-216.
  42. O. Kisi and H. Kubra Unal, Rough ${\Delta}\mathcal{I}_2$-statistical convergence of double difference sequences in normed linear spaces, Bull. Math. Anal. Appl. 12 (2020), 1-11.
  43. O. Kisi, Rough ${\Delta}\mathcal{I}_2$-convergence of double difference sequences, Ann. Fuzzy Math. Inform. 20 (2020), 105-114. https://doi.org/10.30948/AFMI.2020.20.2.105
  44. O. Kisi and H. Kubra Unal, Rough statistical convergence of difference double sequences in normed linear spaces, Honam Math. J. 4 (2021), 47-58.
  45. O. Kisi, E. Dundar, Rough $\mathcal{I}_2$-lacunary statistical convergence of double sequences, J. Inequal. Appl. 2018 (2018), 16 pages.