DOI QR코드

DOI QR Code

탄성파 자료 잡음 제거를 위한 비지도 학습 연구

The Use of Unsupervised Machine Learning for the Attenuation of Seismic Noise

  • Kim, Sujeong (Department of Geology, Kyungpook National University) ;
  • Jun, Hyunggu (Department of Geology, Kyungpook National University)
  • 투고 : 2022.02.07
  • 심사 : 2022.03.31
  • 발행 : 2022.05.31

초록

탄성파 자료 취득 시 신호와 함께 기록되는 다양한 형태의 잡음은 탄성파 자료의 정확한 해석을 방해하는 요인으로 작용한다. 따라서 탄성파 자료의 잡음 제거는 탄성파 자료 처리 과정 중 필수적인 절차이므로 기계 학습을 포함한 다양한 방식의 잡음 제거 연구가 수행되고 있다. 본 연구에서는 비지도 학습 기반의 탄성파 잡음 제거 모델을 이용하여 중합 전 탄성파 자료의 잡음 제거를 수행하고자 하였으며 총 세 가지의 비지도 학습 기반 기계 학습 모델을 비교하였다. 세 가지의 비지도 학습 모델은 N2NUNET, PATCHUNET, DDUL로 각각 서로 다른 신경망 구조를 통해 정답 자료 없이 탄성파 잡음을 제거한다. 세 가지 모델들을 인공 합성 및 현장 중합 전 탄성파 자료에 적용하여 잡음을 제거한 후 그 결과를 정성적·정량적으로 분석하였으며, 분석 결과 세 가지 비지도 학습 모델 모두 인공 합성 및 현장 자료의 탄성파 잡음을 적절히 제거하였음을 확인하였다. 그 중 N2NUNET 모델이 가장 낮은 잡음 제거 성능을 보여주었으며, PATCHUNET과 DDUL은 거의 유사한 결과를 도출하였지만, DDUL이 정량적으로 근소한 우위를 보였다.

When acquiring seismic data, various types of simultaneously recorded seismic noise hinder accurate interpretation. Therefore, it is essential to attenuate this noise during the processing of seismic data and research on seismic noise attenuation. For this purpose, machine learning is extensively used. This study attempts to attenuate noise in prestack seismic data using unsupervised machine learning. Three unsupervised machine learning models, N2NUNET, PATCHUNET, and DDUL, are trained and applied to synthetic and field prestack seismic data to attenuate the noise and leave clean seismic data. The results are qualitatively and quantitatively analyzed and demonstrated that all three unsupervised learning models succeeded in removing seismic noise from both synthetic and field data. Of the three, the N2NUNET model performed the worst, and the PATCHUNET and DDUL models produced almost identical results, although the DDUL model performed slightly better.

키워드

과제정보

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 해외자원개발협회의 지원을 받아 수행된 연구임(데이터사이언스 기반 석유·가스 탐사 컨소시엄).

참고문헌

  1. Benesty, J., Chen, J., Huang, Y., and Cohen, I., 2009, Pearson correlation coefficient, In Noise reduction in speech processing, Springer, Berlin, Heidelberg. 1-4. doi: 10.1007/978-3-642-00296-0_5.
  2. Canales, L. L., 1984, Random noise reduction, In SEG Technical Program Expanded Abstracts 1984, Society of Exploration Geophysicists, 525-527. doi: 10.1190/1.1894168.
  3. Chen, Y., and Fomel, S., 2014, Random noise attenuation using local similarity, In SEG Technical Program Expanded Abstracts 2014, Society of Exploration Geophysicists, 4360-4365. doi: 10.1190/segam2014-0594.1.
  4. Chen, Y., Zhang, M., Bai, M., and Chen, W., 2019, Improving the signal-to-noise ratio of seismological datasets by unsupervised machine learning, Seismological Research Letters, 90(4), 1552-1564. doi: 10.1785/0220190028.
  5. Di, H., Li, C., Smith, S., and Abubakar, A., 2019, Machine learning-assisted seismic interpretation with geologic constraints, In SEG International Exposition and Annual Meeting, Society of Exploration Geophysicists, 5360-5364. doi: 10.1190/segam2019-w4-01.1.
  6. Dondurur, D., 2018, Acquisition and processing of marine seismic data, Elsevier, 174-212. https://www.elsevier.com/books/acquisition-and-processing-of-marine-seismic-data/dondurur/978-0-12-811490-2
  7. Fabien-Ouellet, G., and Sarkar, R., 2020, Seismic velocity estimation: A deep recurrent neural-network approach, Geophysics, 85(1), U21-U29. doi: 10.1190/geo2018-0786.1.
  8. Fomel, S, 2007, Local seismic attributes, Geophysics, 72(3), A29-A33. doi: 10.1190/1.2437573.
  9. Graves, R. W., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bulletin of the seismological society of America, 1091-1106. http://web.gps.caltech.edu/~clay/Ge263/Graves1996.pdf.
  10. Hore, A. and Ziou, D., 2010, Image quality metrics: PSNR vs. SSIM, Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2366-2369. doi: 10.1109/ICPR.2010.579.
  11. Jia, Y., and Ma, J., 2017, What can machine learning do for seismic data processing? An interpolation application, Geophysics, 82(3), V163-V177. doi: 10.1190/geo2016-0300.1.
  12. Jun, H., Jou, H. T., Kim, C. H., Lee, S. H., and Kim, H. J., 2020, Random noise attenuation of sparker seismic oceanography data with machine learning, Ocean Science, 16(6), 1367-1383. https://os.copernicus.org/articles/16/1367/2020/os-16-1367-2020.pdf. https://doi.org/10.5194/os-16-1367-2020
  13. Jun, H., Kim, C., Kim, H.-J., 2021, Machine-learning based noise attenuation of field seismic data using noise data acquisition, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(5), 408-417. (in Korean with English abstract) https://www.jksmer.or.kr/articles/article/Pwv9/. https://doi.org/10.32390/ksmer.2021.58.5.408
  14. Jun, H., and Cho, Y., 2022, Repeatability enhancement of time-lapse seismic data via a convolutional autoencoder, Geophysical Journal International, 228(2), 1150-1170. doi: 10.1093/gji/ggab397.
  15. Kumar, P. C., and Sain, K., 2018, Attribute amalgamation-aiding interpretation of faults from seismic data: An example from Waitara 3D prospect in Taranaki basin off New Zealand, Journal of Applied Geophysics, 159, 52-68. doi: 10.1016/j.jappgeo.2018.07.023.
  16. Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., and Aila, T., 2018, Noise2noise: Learning image restoration without clean data, arXiv. doi: 10.48550/arXiv.1803.04189.
  17. Li, D., Peng, S., Lu, Y., Guo, Y., and Cui, X., 2019, Seismic structure interpretation based on machine learning: A case study in coal mining, Interpretation, 7(3), SE69-SE79. doi: 10.1190/INT-2018-0208.1.
  18. Li, H., Yang, W., and Yong, X., 2018, Deep learning for ground-roll noise attenuation, In SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, 1981-1985. doi: 10.1190/segam2018-2981295.1.
  19. Liu, B., Yue, J., Zuo, Z., Xu, X., Fu, C., Yang, S., and Jiang, P., 2021, Unsupervised deep learning for random noise attenuation of seismic data, IEEE Geoscience and Remote Sensing Letters, 19, 1-5. doi: 10.1109/LGRS.2021.3057631.
  20. Martin G. S., Wiley R., and Marfurt K. J., 2006, Marmousi2: An elastic upgrade for Marmousi, The Leading Edge, 25, 156-166. doi: 10.1190/1.2172306.
  21. Quan, Y., Chen, M., Pang, T., and Ji, H., 2020, Self2self with dropout: Learning self-supervised denoising from single image, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10, 1890-1898. doi: 10.1109/CVPR42600.2020.00196.
  22. Ronneberger, O., Fischer, P., and Brox, T., 2015, October, U-net: Convolutional networks for biomedical image segmentation, In International Conference on Medical image computing and computer-assisted intervention, Springer, Cham, 234-241. https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28.
  23. Saad, O. M., and Chen, Y., 2020, Deep denoising autoencoder for seismic random noise attenuation, Geophysics, 85(4), V367-V376. doi: 10.1190/geo2019-0468.1.
  24. Saad, O. M., and Chen, Y., 2021, A fully unsupervised and highly generalized deep learning approach for random noise suppression, Geophysical Prospecting, 69(4), 709-726. doi: 10.1111/1365-2478.13062.
  25. Schober, P., Boer, C., and Schwarte, L. A., 2018, Correlation coefficients: appropriate use and interpretation, Anesthesia & Analgesia, 126(5), 1763-1768. doi: 10.1213/ANE.0000000000002864.
  26. Schuba, C. N., Schuba, J. P., Gray, G. G., and Davy, R. G., 2019, Interface-targeted seismic velocity estimation using machine learning, Geophysical Journal International, 218(1), 45-56. doi: 10.1093/gji/ggz142.
  27. Si, X., and Yuan, Y., 2018, Random noise attenuation based on residual learning of deep convolutional neural network, In SEG technical program expanded abstracts 2018, Society of Exploration Geophysicists, 1986-1990. doi: 10.1190/segam2018-2985176.1.
  28. Si, X., 2020, Ground roll attenuation with conditional generative adversarial networks, In SEG International Exposition and Annual Meeting, Society of Exploration Geophysicists, Society of Exploration Geophysicists. doi: 10.1190/segam2020-3424945.1.
  29. Wang, H., Zhang, Q., Zhang, G., Fang, J., and Chen, Y., 2020, Self-training and learning the waveform features of microseismic data using an adaptive dictionary, Geophysics, 85(3), KS51-KS61. doi: 10.1190/geo2019-0213.1.
  30. Yang, L., Wang, S., Chen, X., Saad, O. M., Chen, W., Oboue, Y. A. S. I., and Chen, Y., 2021, Unsupervised 3-D random noise attenuation using deep skip autoencoder, IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16. doi: 10.1109/tgrs.2021.3100455.
  31. Zhang, C., Frogner, C., Araya-Polo, M., and Hohl, D., 2014, Machine-learning based automated fault detection in seismic traces, In 76th EAGE Conference and Exhibition 2014, European Association of Geoscientists & Engineers, 1-5. doi: 10.3997/2214-4609.20141500.
  32. Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L., 2017, Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising, IEEE Transactions on Image Processing, 26(7), 3142-3155. doi: 10.1109/TIP.2017.2662206.
  33. Zhou, C., and Brown, S., 2020, Automatic velocity model building with machine learning, In SEG Technical Program Expanded Abstracts 2020, Society of Exploration Geophysicists, 1596-1600. doi: 10.1190/segam2020-3427836.1.