DOI QR코드

DOI QR Code

Immunologic Basis of Type 2 Biologics for Severe Asthma

  • Soyoon Sim (Department of Allergy and Clinical Immunology, Ajou University School of Medicine) ;
  • Youngwoo Choi (Department of Allergy and Clinical Immunology, Ajou University School of Medicine) ;
  • Hae-Sim Park (Department of Allergy and Clinical Immunology, Ajou University School of Medicine)
  • Received : 2022.09.27
  • Accepted : 2022.11.07
  • Published : 2022.12.31

Abstract

Asthma is a chronic airway inflammatory disease characterized by reversible airway obstruction and airway hyperreactivity to various environmental stimuli, leading to recurrent cough, dyspnea, and wheezing episodes. Regarding inflammatory mechanisms, type 2/eosinophilic inflammation along with activated mast cells is the major one; however, diverse mechanisms, including structural cells-derived and non-type 2/neutrophilic inflammations are involved, presenting heterogenous phenotypes. Although most asthmatic patients could be properly controlled by the guided treatment, patients with severe asthma (SA; classified as a treatment-refractory group) suffer from uncontrolled symptoms with frequent asthma exacerbations even on regular anti-inflammatory medications, raising needs for additional controllers, including biologics that target specific molecules found in asthmatic airway, and achieving the precision medicine for asthma. This review summarizes the immunologic basis of airway inflammatory mechanisms and current biologics for SA in order to address unmet needs for future targets.

Keywords

Acknowledgement

This study was supported by the Korean Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) grant funded by the Ministry of Health and Welfare, Republic of Korea (HR16C0001).

References

  1. Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: moving toward precision medicine. J Allergy Clin Immunol 2019;144:1-12.  https://doi.org/10.1016/j.jaci.2019.05.031
  2. Asher I, Bissell K, Chiang CY, El Sony A, Ellwood P, Garcia-Marcos L, Marks GB, Mortimer K, Pearce N, Strachan D. Calling time on asthma deaths in tropical regions-how much longer must people wait for essential medicines? Lancet Respir Med 2019;7:13-15.  https://doi.org/10.1016/S2213-2600(18)30513-7
  3. Reddel HK, Bacharier LB, Bateman ED, Brightling CE, Brusselle GG, Buhl R, Cruz AA, Duijts L, Drazen JM, FitzGerald JM, et al. Global Initiative for Asthma strategy 2021: executive summary and rationale for key changes. Eur Respir J 2021;59:2102730. 
  4. Holguin F, Cardet JC, Chung KF, Diver S, Ferreira DS, Fitzpatrick A, Gaga M, Kellermeyer L, Khurana S, Knight S, et al. Management of severe asthma: a European Respiratory Society/American Thoracic Society guideline. Eur Respir J 2020;55:1900588. 
  5. Busse WW, Kraft M. Current unmet needs and potential solutions to uncontrolled asthma. Eur Respir Rev 2022;31:210176.
  6. McGregor MC, Krings JG, Nair P, Castro M. Role of biologics in asthma. Am J Respir Crit Care Med 2019;199:433-445.  https://doi.org/10.1164/rccm.201810-1944CI
  7. Moore WC, Bleecker ER, Curran-Everett D, Erzurum SC, Ameredes BT, Bacharier L, Calhoun WJ, Castro M, Chung KF, Clark MP, et al. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. J Allergy Clin Immunol 2007;119:405-413.  https://doi.org/10.1016/j.jaci.2006.11.639
  8. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 2012;18:716-725.  https://doi.org/10.1038/nm.2678
  9. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, Koth LL, Arron JR, Fahy JV. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 2009;180:388-395.  https://doi.org/10.1164/rccm.200903-0392OC
  10. Fahy JV. Type 2 inflammation in asthma--present in most, absent in many. Nat Rev Immunol 2015;15:57-65.  https://doi.org/10.1038/nri3786
  11. Israel E, Reddel HK. Severe and difficult-to-treat asthma in adults. N Engl J Med 2017;377:965-976.  https://doi.org/10.1056/NEJMra1608969
  12. Choi Y, Sim S, Park HS. Distinct functions of eosinophils in severe asthma with type 2 phenotype: clinical implications. Korean J Intern Med 2020;35:823-833.  https://doi.org/10.3904/kjim.2020.022
  13. Sim S, Choi Y, Park HS. Potential metabolic biomarkers in adult asthmatics. Metabolites 2021;11:430. 
  14. Lee Y, Lee JH, Yang EM, Kwon E, Jung CG, Kim SC, Choi Y, Cho YS, Kim CK, Park HS. Serum levels of eosinophil-derived neurotoxin: a biomarker for asthma severity in adult asthmatics. Allergy Asthma Immunol Res 2019;11:394-405.  https://doi.org/10.4168/aair.2019.11.3.394
  15. Choi Y, Le Pham D, Lee DH, Lee SH, Kim SH, Park HS. Biological function of eosinophil extracellular traps in patients with severe eosinophilic asthma. Exp Mol Med 2018;50:1-8.  https://doi.org/10.1038/s12276-018-0136-8
  16. Choi Y, Kim YM, Lee HR, Mun J, Sim S, Lee DH, Pham DL, Kim SH, Shin YS, Lee SW, et al. Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy 2020;75:95-103.  https://doi.org/10.1111/all.13997
  17. Kim HJ, Sim MS, Lee DH, Kim C, Choi Y, Park HS, Chung IY. Lysophosphatidylserine induces eosinophil extracellular trap formation and degranulation: Implications in severe asthma. Allergy 2020;75:3159-3170.  https://doi.org/10.1111/all.14450
  18. Rodriguez-Rodriguez N, Gogoi M, McKenzie AN. Group 2 innate lymphoid cells: team players in regulating asthma. Annu Rev Immunol 2021;39:167-198.  https://doi.org/10.1146/annurev-immunol-110119-091711
  19. Trinh HK, Pham DL, Choi Y, Kim HM, Kim SH, Park HS. Epithelial folliculin enhances airway inflammation in aspirin-exacerbated respiratory disease. Clin Exp Allergy 2018;48:1464-1473.  https://doi.org/10.1111/cea.13253
  20. Choi Y, Lee DH, Lee JH, Shin YS, Kim SH, Park HS. Immunomodulatory function of surfactant protein D in eosinophilic asthma. Allergy 2019;74:192-195.  https://doi.org/10.1111/all.13588
  21. Choi Y, Lee DH, Trinh HK, Ban GY, Park HK, Shin YS, Kim SH, Park HS. Surfactant protein D alleviates eosinophil-mediated airway inflammation and remodeling in patients with aspirin-exacerbated respiratory disease. Allergy 2019;74:78-88.  https://doi.org/10.1111/all.13458
  22. Choi Y, Lee Y, Park HS. Which factors associated with activated eosinophils contribute to the pathogenesis of aspirin-exacerbated respiratory disease? Allergy Asthma Immunol Res 2019;11:320-329.  https://doi.org/10.4168/aair.2019.11.3.320
  23. Choi Y, Jang J, Park HS. Pulmonary surfactants: a new therapeutic target in asthma. Curr Allergy Asthma Rep 2020;20:70. 
  24. Sim S, Choi Y, Lee DH, Lee HR, Seob Shin Y, Park HS. Contribution of dipeptidyl peptidase 10 to airway dysfunction in patients with NSAID-exacerbated respiratory disease. Clin Exp Allergy 2022;52:115-126. https://doi.org/10.1111/cea.14003
  25. Park H, Choi Y, Jung CG, Park HS. Potential biomarkers for NSAID-exacerbated respiratory disease. Mediators Inflamm 2017;2017:8160148. 
  26. Hudey SN, Ledford DK, Cardet JC. Mechanisms of non-type 2 asthma. Curr Opin Immunol 2020;66:123-128.  https://doi.org/10.1016/j.coi.2020.10.002
  27. Esteban-Gorgojo I, Antolin-Amerigo D, Dominguez-Ortega J, Quirce S. Non-eosinophilic asthma: current perspectives. J Asthma Allergy 2018;11:267-281.  https://doi.org/10.2147/JAA.S153097
  28. Kim YM, Kim H, Lee S, Kim S, Lee JU, Choi Y, Park HW, You G, Kang H, Lee S, et al. Airway G-CSF identifies neutrophilic inflammation and contributes to asthma progression. Eur Respir J 2020;55:1900827. 
  29. Choi Y, Lee Y, Park HS. Neutrophil activation in occupational asthma. Curr Opin Allergy Clin Immunol 2019;19:81-85.  https://doi.org/10.1097/ACI.0000000000000507
  30. Choi Y, Pham LD, Lee DH, Ban GY, Lee JH, Kim SH, Park HS. Neutrophil extracellular DNA traps induce autoantigen production by airway epithelial cells. Mediators Inflamm 2017;2017:5675029. 
  31. Quoc QL, Choi Y, Thi Bich TC, Yang EM, Shin YS, Park HS. S100A9 in adult asthmatic patients: a biomarker for neutrophilic asthma. Exp Mol Med 2021;53:1170-1179.  https://doi.org/10.1038/s12276-021-00652-5
  32. Bich TC, Quoc QL, Choi Y, Yang EM, Trinh HK, Shin YS, Park HS. Serum amyloid A1: a biomarker for neutrophilic airway inflammation in adult asthmatic patients. Allergy Asthma Immunol Res 2022;14:40-58.  https://doi.org/10.4168/aair.2022.14.1.40
  33. Marone G, Triggiani M, Genovese A, De Paulis A. Role of human mast cells and basophils in bronchial asthma. Adv Immunol 2005;88:97-160.  https://doi.org/10.1016/S0065-2776(05)88004-6
  34. Marone G, Triggiani M, de Paulis A. Mast cells and basophils: friends as well as foes in bronchial asthma? Trends Immunol 2005;26:25-31.  https://doi.org/10.1016/j.it.2004.10.010
  35. Gelfand EW. Role of histamine in the pathophysiology of asthma: immunomodulatory and antiinflammatory activities of H1-receptor antagonists. Am J Med 2002;113 Suppl 9A:2S-7S.  https://doi.org/10.1016/S0002-9343(02)01431-6
  36. Hart PH. Regulation of the inflammatory response in asthma by mast cell products. Immunol Cell Biol 2001;79:149-153.  https://doi.org/10.1046/j.1440-1711.2001.00983.x
  37. Saluja R, Ketelaar ME, Hawro T, Church MK, Maurer M, Nawijn MC. The role of the IL-33/IL-1RL1 axis in mast cell and basophil activation in allergic disorders. Mol Immunol 2015;63:80-85.  https://doi.org/10.1016/j.molimm.2014.06.018
  38. Kubo M. Mast cells and basophils in allergic inflammation. Curr Opin Immunol 2018;54:74-79.  https://doi.org/10.1016/j.coi.2018.06.006
  39. Denlinger LC, Phillips BR, Ramratnam S, Ross K, Bhakta NR, Cardet JC, Castro M, Peters SP, Phipatanakul W, Aujla S, et al. Inflammatory and comorbid features of patients with severe asthma and frequent exacerbations. Am J Respir Crit Care Med 2017;195:302-313.  https://doi.org/10.1164/rccm.201602-0419OC
  40. Weller PF. Human eosinophils. J Allergy Clin Immunol 1997;100:283-287.  https://doi.org/10.1016/S0091-6749(97)70237-9
  41. Kita H, Weiler DA, Abu-Ghazaleh R, Sanderson CJ, Gleich GJ. Release of granule proteins from eosinophils cultured with IL-5. J Immunol 1992;149:629-635.  https://doi.org/10.4049/jimmunol.149.2.629
  42. Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J Biol Chem 2014;289:17406-17415.  https://doi.org/10.1074/jbc.R113.546218
  43. Lee Y, Quoc QL, Park HS. Biomarkers for severe asthma: lessons from longitudinal cohort studies. Allergy Asthma Immunol Res 2021;13:375-389.  https://doi.org/10.4168/aair.2021.13.3.375
  44. Hur GY, Park HS. Clinical characteristics of NSAID-induced blended reaction. Allergy Asthma Immunol Res 2021;13:171-172.  https://doi.org/10.4168/aair.2021.13.2.171
  45. Rhyou HI, Nam YH, Park HS. Emerging biomarkers beyond leukotrienes for the management of nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease. Allergy Asthma Immunol Res 2022;14:153-167. https://doi.org/10.4168/aair.2022.14.2.153
  46. Yokomizo T, Nakamura M, Shimizu T. Leukotriene receptors as potential therapeutic targets. J Clin Invest 2018;128:2691-2701.  https://doi.org/10.1172/JCI97946
  47. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol 2018;9:113. 
  48. Ray A, Kolls JK. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol 2017;38:942-954.  https://doi.org/10.1016/j.it.2017.07.003
  49. Crisford H, Sapey E, Rogers GB, Taylor S, Nagakumar P, Lokwani R, Simpson JL. Neutrophils in asthma: the good, the bad and the bacteria. Thorax 2021;76:835-844.  https://doi.org/10.1136/thoraxjnl-2020-215986
  50. Ventura I, Vega A, Chacon P, Chamorro C, Aroca R, Gomez E, Bellido V, Puente Y, Blanca M, Monteseirin J. Neutrophils from allergic asthmatic patients produce and release metalloproteinase-9 upon direct exposure to allergens. Allergy 2014;69:898-905.  https://doi.org/10.1111/all.12414
  51. Mattos W, Lim S, Russell R, Jatakanon A, Chung KF, Barnes PJ. Matrix metalloproteinase-9 expression in asthma: effect of asthma severity, allergen challenge, and inhaled corticosteroids. Chest 2002;122:1543-1552.  https://doi.org/10.1378/chest.122.5.1543
  52. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532-1535.  https://doi.org/10.1126/science.1092385
  53. Vargas A, Boivin R, Cano P, Murcia Y, Bazin I, Lavoie JP. Neutrophil extracellular traps are downregulated by glucocorticosteroids in lungs in an equine model of asthma. Respir Res 2017;18:207. 
  54. Grabcanovic-Musija F, Obermayer A, Stoiber W, Krautgartner WD, Steinbacher P, Winterberg N, Bathke AC, Klappacher M, Studnicka M. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir Res 2015;16:59. 
  55. Fricker M, Gibson PG. Macrophage dysfunction in the pathogenesis and treatment of asthma. Eur Respir J 2017;50:1700196. 
  56. Saradna A, Do DC, Kumar S, Fu QL, Gao P. Macrophage polarization and allergic asthma. Transl Res 2018;191:1-14.  https://doi.org/10.1016/j.trsl.2017.09.002
  57. Benson RC, Hardy KA, Morris CR. Arginase and arginine dysregulation in asthma. J Allergy (Cairo) 2011;2011:736319. 
  58. Zhu X, Cui J, Yi L, Qin J, Tulake W, Teng F, Tang W, Wei Y, Dong J. The Role of T cells and macrophages in asthma pathogenesis: a new perspective on mutual crosstalk. Mediators Inflamm 2020;2020:7835284. 
  59. Lloyd CM, Hessel EM. Functions of T cells in asthma: more than just TH2 cells. Nat Rev Immunol 2010;10:838-848.  https://doi.org/10.1038/nri2870
  60. Massey O, Suphioglu C. Recent advances in the inhibition of the IL-4 cytokine pathway for the treatment of allergen-induced asthma. Int J Mol Sci 2021;22:13655. 
  61. Martin-Orozco E, Norte-Munoz M, Martinez-Garcia J, Regulatory T. Regulatory T cells in allergy and asthma. Front Pediatr 2017;5:117. 
  62. Yu S, Kim HY, Chang YJ, DeKruyff RH, Umetsu DT. Innate lymphoid cells and asthma. J Allergy Clin Immunol 2014;133:943-950.  https://doi.org/10.1016/j.jaci.2014.02.015
  63. Zheng H, Zhang Y, Pan J, Liu N, Qin Y, Qiu L, Liu M, Wang T. The role of type 2 innate lymphoid cells in allergic diseases. Front Immunol 2021;12:586078. 
  64. Liu S, Verma M, Michalec L, Liu W, Sripada A, Rollins D, Good J, Ito Y, Chu H, Gorska MM, et al. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin. J Allergy Clin Immunol 2018;141:257-268.e6. https://doi.org/10.1016/j.jaci.2017.03.032
  65. Ozyigit LP, Morita H, Akdis M. Innate lymphocyte cells in asthma phenotypes. Clin Transl Allergy 2015;5:23. 
  66. Kim J, Chang Y, Bae B, Sohn KH, Cho SH, Chung DH, Kang HR, Kim HY. Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. J Allergy Clin Immunol 2019;143:1769-1782.e11.  https://doi.org/10.1016/j.jaci.2018.10.040
  67. Bousquet J, Humbert M, Gibson PG, Kostikas K, Jaumont X, Pfister P, Nissen F. Real-world effectiveness of omalizumab in severe allergic asthma: a meta-analysis of observational studies. J Allergy Clin Immunol Pract 2021;9:2702-2714.  https://doi.org/10.1016/j.jaip.2021.01.011
  68. Agache I, Rocha C, Beltran J, Song Y, Posso M, Sola I, Alonso-Coello P, Akdis C, Akdis M, Canonica GW, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab and omalizumab) for severe allergic asthma: a systematic review for the EAACI guidelines - recommendations on the use of biologicals in severe asthma. Allergy 2020;75:1043-1057.  https://doi.org/10.1111/all.14235
  69. Albers FC, Licskai C, Chanez P, Bratton DJ, Bradford ES, Yancey SW, Kwon N, Quirce S. Baseline blood eosinophil count as a predictor of treatment response to the licensed dose of mepolizumab in severe eosinophilic asthma. Respir Med 2019;159:105806. 
  70. Bel EH, Wenzel SE, Thompson PJ, Prazma CM, Keene ON, Yancey SW, Ortega HG, Pavord ID; SIRIUS Investigators. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med 2014;371:1189-1197.  https://doi.org/10.1056/NEJMoa1403291
  71. Brusselle G, Germinaro M, Weiss S, Zangrilli J. Reslizumab in patients with inadequately controlled lateonset asthma and elevated blood eosinophils. Pulm Pharmacol Ther 2017;43:39-45.  https://doi.org/10.1016/j.pupt.2017.01.011
  72. Farne HA, Wilson A, Powell C, Bax L, Milan SJ. Anti-IL5 therapies for asthma. Cochrane Database Syst Rev 2017;9:CD010834. 
  73. Bleecker ER, Wechsler ME, FitzGerald JM, Menzies-Gow A, Wu Y, Hirsch I, Goldman M, Newbold P, Zangrilli JG. Baseline patient factors impact on the clinical efficacy of benralizumab for severe asthma. Eur Respir J 2018;52:1800936. 
  74. Nair P, Wenzel S, Rabe KF, Bourdin A, Lugogo NL, Kuna P, Barker P, Sproule S, Ponnarambil S, Goldman M, et al. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N Engl J Med 2017;376:2448-2458.  https://doi.org/10.1056/NEJMoa1703501
  75. Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, Busse WW, Ford L, Sher L, FitzGerald JM, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med 2018;378:2486-2496.  https://doi.org/10.1056/NEJMoa1804092
  76. Wechsler ME, Ruddy MK, Pavord ID, Israel E, Rabe KF, Ford LB, Maspero JF, Abdulai RM, Hu CC, Martincova R, et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma. N Engl J Med 2021;385:1656-1668.  https://doi.org/10.1056/NEJMoa2024257
  77. Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL, Cheung DS, Theess W, Yang X, Staton TL, Choy DF, et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: a randomized clinical trial. J Allergy Clin Immunol 2021;148:790-798.  https://doi.org/10.1016/j.jaci.2021.03.044
  78. Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM, van der Merwe R. Tezepelumab in adults with uncontrolled asthma. N Engl J Med 2017;377:936-946.  https://doi.org/10.1056/NEJMoa1704064
  79. Menzies-Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME, Brightling CE, Griffiths JM, Hellqvist A, Bowen K, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med 2021;384:1800-1809.  https://doi.org/10.1056/NEJMoa2034975
  80. McCracken JL, Tripple JW, Calhoun WJ. Biologic therapy in the management of asthma. Curr Opin Allergy Clin Immunol 2016;16:375-382.  https://doi.org/10.1097/ACI.0000000000000284
  81. Humbert M, Busse W, Hanania NA, Lowe PJ, Canvin J, Erpenbeck VJ, Holgate S. Omalizumab in asthma: an update on recent developments. J Allergy Clin Immunol Pract 2014;2:525-536.e1. https://doi.org/10.1016/j.jaip.2014.03.010
  82. Manka LA, Wechsler ME. Selecting the right biologic for your patients with severe asthma. Ann Allergy Asthma Immunol 2018;121:406-413.  https://doi.org/10.1016/j.anai.2018.07.033
  83. Casale TB, Luskin AT, Busse W, Zeiger RS, Trzaskoma B, Yang M, Griffin NM, Chipps BE. Omalizumab effectiveness by biomarker status in patients with asthma: evidence from PROSPERO, a prospective realworld study. J Allergy Clin Immunol Pract 2019;7:156-164.e1.  https://doi.org/10.1016/j.jaip.2018.04.043
  84. Garcia G, Magnan A, Chiron R, Contin-Bordes C, Berger P, Taille C, Devouassoux G, de Blay F, Couderc LJ, Didier A, et al. A proof-of-concept, randomized, controlled trial of omalizumab in patients with severe, difficult-to-control, nonatopic asthma. Chest 2013;144:411-419.  https://doi.org/10.1378/chest.12-1961
  85. Khatri S, Moore W, Gibson PG, Leigh R, Bourdin A, Maspero J, Barros M, Buhl R, Howarth P, Albers FC, et al. Assessment of the long-term safety of mepolizumab and durability of clinical response in patients with severe eosinophilic asthma. J Allergy Clin Immunol 2019;143:1742-1751.e7.  https://doi.org/10.1016/j.jaci.2018.09.033
  86. Menzella F, Ruggiero P, Ghidoni G, Fontana M, Bagnasco D, Livrieri F, Scelfo C, Facciolongo N. AntiIL5 therapies for severe eosinophilic asthma: literature review and practical insights. J Asthma Allergy 2020;13:301-313.  https://doi.org/10.2147/JAA.S258594
  87. Harvey ES, Langton D, Katelaris C, Stevens S, Farah CS, Gillman A, Harrington J, Hew M, Kritikos V, Radhakrishna N, et al. Mepolizumab effectiveness and identification of super-responders in severe asthma. Eur Respir J 2020;55:1902420. 
  88. Corren J, Weinstein S, Janka L, Zangrilli J, Garin M. Phase 3 study of reslizumab in patients with poorly controlled asthma: effects across a broad range of eosinophil counts. Chest 2016;150:799-810.  https://doi.org/10.1016/j.chest.2016.03.018
  89. Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG, Bardin P, Murphy K, Maspero JF, O'Brien C, Korn S. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med 2015;3:355-366.  https://doi.org/10.1016/S2213-2600(15)00042-9
  90. Jang JH, Woo SD, Lee Y, Kim CK, Shin YS, Ye YM, Park HS. Changes in type 2 biomarkers after anti-IL5 treatment in patients with severe eosinophilic asthma. Allergy Asthma Immunol Res 2021;13:330-338.  https://doi.org/10.4168/aair.2021.13.2.330
  91. Davila Gonzalez I, Moreno Benitez F, Quirce S. Benralizumab: a new approach for the treatment of severe eosinophilic asthma. J Investig Allergol Clin Immunol 2019;29:84-93.  https://doi.org/10.18176/jiaci.0385
  92. FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, Ferguson GT, Busse WW, Barker P, Sproule S, et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, doubleblind, placebo-controlled phase 3 trial. Lancet 2016;388:2128-2141.  https://doi.org/10.1016/S0140-6736(16)31322-8
  93. Pepper AN, Renz H, Casale TB, Garn H. Biologic therapy and novel molecular targets of severe asthma. J Allergy Clin Immunol Pract 2017;5:909-916.  https://doi.org/10.1016/j.jaip.2017.04.038
  94. Borish LC, Nelson HS, Corren J, Bensch G, Busse WW, Whitmore JB, Agosti JM; IL-4R Asthma Study Group. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 2001;107:963-970.  https://doi.org/10.1067/mai.2001.115624
  95. Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J, Wenzel SE, Chon Y, Dunn M, Weng HH, et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Rα antagonist, in patients with asthma. Am J Respir Crit Care Med 2010;181:788-796.  https://doi.org/10.1164/rccm.200909-1448OC
  96. Hanania NA, Korenblat P, Chapman KR, Bateman ED, Kopecky P, Paggiaro P, Yokoyama A, Olsson J, Gray S, Holweg CT, et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir Med 2016;4:781-796.  https://doi.org/10.1016/S2213-2600(16)30265-X
  97. Panettieri RA Jr, Sjobring U, Peterffy A, Wessman P, Bowen K, Piper E, Colice G, Brightling CE. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, doubleblind, placebo-controlled, phase 3 clinical trials. Lancet Respir Med 2018;6:511-525. https://doi.org/10.1016/S2213-2600(18)30184-X
  98. Marone G, Spadaro G, Braile M, Poto R, Criscuolo G, Pahima H, Loffredo S, Levi-Schaffer F, Varricchi G. Tezepelumab: a novel biological therapy for the treatment of severe uncontrolled asthma. Expert Opin Investig Drugs 2019;28:931-940.  https://doi.org/10.1080/13543784.2019.1672657
  99. Gauvreau G, Hohlfeld J, Boulet LP, Cockcroft D, Davis B, Fitzgerald JM, Korn S, Kornmann O, Leigh R, Mayers I, et al. Late breaking abstract - efficacy of CSJ117 on allergen-induced asthmatic responses in mild atopic asthma patients. Eur Respir J 2020;56:3690. 
  100. Lee J, Werth VP, Hall RP 3rd, Eming R, Fairley JA, Fajgenbaum DC, Harman KE, Jonkman MF, Korman NJ, Ludwig RJ, et al. Perspective from the 5th International Pemphigus and Pemphigoid Foundation Scientific Conference. Front Med (Lausanne) 2018;5:306. 
  101. Nixon J, Newbold P, Mustelin T, Anderson GP, Kolbeck R. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation. Pharmacol Ther 2017;169:57-77. https://doi.org/10.1016/j.pharmthera.2016.10.016