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ABSTRACT

Asthma is a chronic airway inflammatory disease characterized by reversible airway obstruction 
and airway hyperreactivity to various environmental stimuli, leading to recurrent cough, 
dyspnea, and wheezing episodes. Regarding inflammatory mechanisms, type 2/eosinophilic 
inflammation along with activated mast cells is the major one; however, diverse mechanisms, 
including structural cells-derived and non-type 2/neutrophilic inflammations are involved, 
presenting heterogenous phenotypes. Although most asthmatic patients could be properly 
controlled by the guided treatment, patients with severe asthma (SA; classified as a treatment-
refractory group) suffer from uncontrolled symptoms with frequent asthma exacerbations even 
on regular anti-inflammatory medications, raising needs for additional controllers, including 
biologics that target specific molecules found in asthmatic airway, and achieving the precision 
medicine for asthma. This review summarizes the immunologic basis of airway inflammatory 
mechanisms and current biologics for SA in order to address unmet needs for future targets.
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INTRODUCTION

Asthma is the most common chronic inflammatory disease of the airways driven by 
interactions between genetic/epigenetic factors and environmental exposure (1). It is 
recognized as a major global health problem because asthma prevalence and mortality have 
been progressively increasing during recent decades, placing a significant burden on patients 
and society (2). Even more, some asthmatic patients (called those with severe asthma, SA) 
remain uncontrolled despite regular treatment including medium-to-high-dose inhaled 
corticosteroid (ICS) plus long-acting beta 2 agonist with proper inhaler technique and 
adherence. They suffer from persistent symptoms, and have higher risks of comorbidities 
and asthma exacerbations, impacting on poor quality of life (3,4). Therefore, more efforts 
are needed for the correct diagnosis of SA, active patient education with self-management 
strategies, and developing additional targets, which will address major unmet needs in 
SA (5). Recently, several type 2 biologics have been approved for their safety, efficacy, 
mechanism of action, and indications (6). The emergence of these novel agents has provided 
targeted therapies for SA, but therapeutic options are not enough. Here, we explore potential 
future targets for SA by understanding its immunological mechanisms.
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ASTHMA PHENOTYPES

Definition of SA
The phenotype of SA includes difficult-to-treat or poorly controlled asthma. Although 
the majority of adult asthmatic patients have achieved disease control with the standard 
therapy including maintenance treatment of ICS with/without long-acting beta 2 agonist, 
5%–10% of them (classified as SA) remain in uncontrolled status and suffer from frequent 
asthma exacerbations (7). Understanding immunologic mechanisms (with complexity) in 
the pathogenesis of SA has led to the development of new therapeutic targets for better 
management. Typically, SA has been classified into type 2 and non-type 2 asthma according 
to inflammatory cell phenotypes (increased eosinophil vs. neutrophil counts in blood/
sputum), regardless of atopic status. Many researchers and clinicians have recognized asthma 
as a heterogenous disease with multiple phenotypes (8), but preferentially distinguishing 
type 2 from non-type 2 asthma when considering biologic therapies.

Type 2 asthma
More than 50% of patients with SA present type 2 inflammation with common characteristics, 
such as activation of mast cells and eosinophils (9), resulting in airway hyperresponsiveness 
(AHR) and reversible airway obstruction followed by airway remodeling (10,11). Blood and 
sputum eosinophilia as well as high levels of serum IgE, eosinophil-derived neurotoxin 
(EDN), and fractional exhaled nitric oxide (FeNO) are key findings for representing the 
phenotype of type 2 asthma (12-14). Moreover, emerging evidence has revealed that eosinophil 
extracellular traps (EETs) containing cytotoxic granule proteins and mediators are involved in 
the pathogenesis of SA (15-17). In addition to mediators related to immune cells, epithelium-
derived cytokines, including IL-25, IL-33, and TSLP, which subsequently induce activation of 
group 2 innate lymphoid cells (ILC2s), have been emphasized in SA with persistent eosinophilic 
airway inflammation (18). Furthermore, close interplays between airway epithelial cells (AECs) 
and immune cells (increased levels of folliculin and dipeptidyl peptidase 10, but decreased 
levels of surfactant protein D) could induce airway inflammation, and remodeling has been 
demonstrated in patients with aspirin-exacerbated respiratory disease (AERD), a phenotype of 
SA (19-25). Although many molecules have been highlighted in type 2 asthma related to disease 
severity, recent biologics under clinical trials mainly focus on targeting IL-4, IL-5, IL-33, and 
TSLP. Therefore, future therapeutic targets remain to be developed, considering complicated 
immune responses in SA.

Non-type 2 asthma
The pathophysiological mechanism of non-type 2 asthma, including neutrophilic and 
pauci-granulocytic asthma, remains poorly understood compared to type 2 asthma. 
Nevertheless, many studies have suggested that non-type 2 asthma is associated with Th1/
Th17 cell activation, showing higher levels of IL-17 in SA (26,27). In addition, a recent paper 
demonstrated the contribution of G-CSF in neutrophilic inflammation of the asthmatic 
airways (28). Furthermore, extracellular traps released by activated neutrophils (defined as 
neutrophil extracellular traps, NETs) have been involved in non-type 2 asthma via stimulating 
airway epithelium (29,30). Especially, S100 calcium-binding protein A9 and amyloid A1 
have been shown to enhance the production of NETs as well as neutrophil activation in 
adult asthmatic patients with severe neutrophilic inflammation, in which activated M1 
macrophages are involved (31,32), suggesting close interactions between neutrophils/
macrophages and AECs in patients with neutrophilic inflammation found in SA. In addition, 
patients with SA are older and less sensitive to current anti-inflammatory treatment 
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(especially, corticosteroids). However, these patients still rely on conventional therapies 
because currently approved biologics for treatment of non-type 2 asthma are still lacking, 
which is an urgent unmet need for SA.

ASTHMA AND IMMUNE CELLS

Mast cells and basophils
Asthma is associated with both innate and adaptive immunity mediated by various immune 
cells as summarized in Fig. 1. Among them, mast cells and basophils share many features as 
key granulocytes for IgE-dependent inflammation by expressing high affinity receptor for IgE. 
However, some different functions in immunological and biochemical mechanisms between 
these 2 cells have been suggested in asthma. Mast cells are tissue-resident cells and localized 
in airway smooth muscle, while basophils circulate in blood and infiltrate inflamed sites 
(33). Nevertheless, both cells are recruited to the lungs by chemotactic activity of regulated 
on activation, normal T cell expressed and secreted (RANTES) and eotaxin-1/2 released from 
AECs. They interact with AECs and other immune cells, releasing various molecules, including 
histamine, cytokines, and chemokines, via IgE-mediated activation or degranulation (34). 
Among them, histamine causes acute-phase reactions in asthma as a strong inducer of airway 
smooth muscle constriction and mucus secretion (35). Similarly, cysteinyl leukotrienes (CysLTs, 
including leukotriene C4/D4/E4) and prostaglandin D2 are major products from mast cells and 
basophils, which act as potent bronchoconstrictors. Furthermore, both cells produce IL-4 and 
IL-13 responsible for Th2 cell differentiation and B cell class switching (36). Especially, IL-33 
and TSLP (known as alarmins), derived from AECs in response to viral infection, pollutants or 
allergens, induce activation and degranulation of these cells, highlighting the importance of 
their interaction with AECs in SA as well as in allergic asthma (37,38).
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Figure 1. Pathological mechanism of Innate and adaptive immune response in type 2 (A) and non-type 2 asthma (B). 
DC, dendritic cell; Eos, eosinophil; Areg, amphiregulin; LT; leukotriene; PGD2, prostaglandin 2; LTC4, leukotriene C4; Neu, neutrophil; NE, neutrophil elastase; 
MPO, myeloperoxidase; MMP-9, matrix metalloprotease-9; S100A9, S100 calcium-binding protein A9; ECM, extracellular matrix.
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Eosinophils
Eosinophils are major effector cells driving type 2 immune response and allergic inflammation 
in asthma pathogenesis. Therefore, increased blood eosinophil count is a useful indicator 
for the determination of asthma phenotype and disease severity (39). Eosinophils regulate 
inflammatory status by releasing various cytokines, such as G-CSF, IL-1α, IL-2, IL-3, IL-4, 
IL-5, IL-6, IL-9, IL-10, IL-13, IL-16, IL-17, IL-25, TNF-α, and TGF as well as chemokines such 
as IL-8, MIP-1α, RANTES, and eotaxins (40). In particular, IL-5 plays an important role in 
the survival and degranulation of eosinophils in an autocrine manner, affecting asthma 
severity and the frequency of asthma exacerbation (41). Moreover, eosinophils have abundant 
proteins within granules, including EDN, eosinophil cationic protein (ECP), and eosinophil 
peroxidase, and major basic protein, which are released when eosinophils are activated (42). 
Recently, serum EDN has been considered a potential biomarker for the phenotype of SA 
by mirroring eosinophil activity and EETs-forming eosinophil counts (43). Although these 
granules predominantly localized in EETs have been suggested to combat against helminth or 
bacteria during infection, excessive release of EETs drives persistent eosinophilic inflammation 
and tissue damage in the airways by the activation of innate immune responses orchestrating 
an interaction between AEC and ILC2s, as well as Th2 responses, which enhances persistent 
eosinophilic inflammation and lung function impairments as key features of SA (15,16). 
Eosinophils also secrete various lipid mediators, such as leukotrienes and prostaglandins, 
through 5-lipoxygenase and cyclooxygenase pathways. Dysregulated arachidonic acid 
metabolism with CysLTs overproduction and prostaglandin E2 reduction is a main feature of 
AERD, which is a phenotype of severe type 2/eosinophilic asthma. Especially, an increased level 
of urinary leukotriene E4 (which is a stable and final product of CysLTs) is considered a useful 
biomarker for the diagnosis of AERD (44). In addition, this mediator could induce mast cell 
and ILC2 activation as well as eosinophils recruitment into the upper and lower airway mucosa, 
enhancing persistent type2/eosinophilic inflammation in the upper and lower airways of 
patients with AERD and resulting in poor clinical outcomes of AERD (45,46).

Neutrophils
Neutrophils act as a first barrier for host defense in innate immunity through phagocytic 
activity against invading microbes (47). However, massive neutrophil infiltration in the 
airways as well as higher blood neutrophil counts contributes to uncontrolled symptoms 
and steroid resistance in asthma. Neutrophilic asthma (NA) is one of the SA phenotypes in 
responses to environmental pollutants, infection, smoking, and obesity. Increased blood/
sputum neutrophil counts is related to asthma severity, in which elevated levels of IL-8 and 
IL-17 activate and recruit neutrophils into asthmatic airways (11,48) Moreover, neutrophils 
affect airway microbiota, which is characterized by low diversity, but high pathogenic 
burdens in bacterial composition (49). Neutrophils produce various cytokines and mediators, 
which induce fibrotic tissue remodeling in the airways. Upon allergen exposure, matrix 
metalloprotease-9 with tissue inhibitor of matrix metalloproteinases-1 is generated, 
enhancing airway inflammation and remodeling in allergic asthma (50,51). Furthermore, 
activated neutrophils release NETs for antimicrobial defense with a web-like complexity 
of DNA, histones, and granule proteins such as neutrophil elastase, myeloperoxidase, and 
cathepsin G (52). However, high prevalence of NETs in the airway results in host damages 
and activates AECs and eosinophils, driving lung function decline and irreversible airflow 
obstruction in patients with SA (53,54). Although the role of neutrophils in type 2 asthma 
is less discussed, the cell has considerable responsibility for persistent symptoms in 
uncontrolled status and poor response to currently available anti-inflammatory medications 
in patients with SA, which are the major unmet needs for the management of SA.
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Macrophages
Macrophages are the richest in the lungs and play critical roles in innate immunity to 
recognize and clear invading pathogens by phagocytosis. Macrophages have both pro- and 
anti-inflammatory effects according to their distinct signaling pathway and gene expression 
(55). Macrophage polarization is critical for determining asthma phenotypes and regulated 
by complex interactions with various cytokines and mediators. In response to environmental 
stimuli, macrophages are polarized into M1 type by lipopolysaccharides, TNF-α, and IFN-γ. 
On the contrary, M2 polarization is predominantly induced by Th2 cytokines (IL-4 and 
IL-13) during allergic inflammation (56). Especially, arginase-1 is a significant M2 marker 
in murine allergic asthma as a regulator of endogenous nitric oxide production, though it 
is not present in human M2 macrophages (57). Moreover, our recent study suggested the 
role of M1 macrophages to activate neutrophils in patients with NA (31). However, further 
investigations are needed to elucidate the role of macrophages interplaying with eosinophils 
and neutrophils, which will be a new target for SA.

T cells
T and B cells participate in adaptive immunity by antigen-specific responses in asthma. T 
cells recognize antigens processed by antigen presenting cells, such as macrophages and 
dendritic cells, and differentiate to their subsets. Among them, the contribution of CD4+ T 
cells, especially Th1, Th2, and Th17 cells, is well-defined according to asthma phenotypes. 
Especially, an imbalance between Th1 and Th2 cells has been emphasized in the pathogenesis 
of type 2 asthma. Th2 cells initiate allergic inflammation and amplify immune responses by 
interacting with multiple immune cells via cytokines including IL-4, IL-5, and IL-13 (58). Th1 
and Th17 cells are closely related to disease severity by driving neutrophilic inflammation and 
steroid resistance in SA. However, they are also increased in type 2 asthmatic airways during 
asthma exacerbation in order to suppress an excessive activation of Th2 cells (59,60). By 
contrast, regulatory T cells suppress allergic inflammation by affecting various immune cells, 
such as eosinophils, neutrophils, T cells, B cells, ILC2s, mast cells, and macrophages, via their 
anti-inflammatory mediators (IL-10, TGF-β1, and granzymes) or specific surface molecules 
(CTLA-4 and OX40). In asthmatic patients, impaired functions of regulatory T cells followed 
by increased population is commonly observed (61). As T cells play a regulating role in SA, 
potential biologics controlling their functions are considered future therapeutic targets.

ILCs
Accumulating evidence has emphasized the importance of ILCs in host defense and mucosal 
immunity. Without antigen specificity, ILCs rapidly release diverse cytokines in response to 
innate stimuli. According to their heterogenetic features, ILCs are divided into 3 subtypes. 
Among them, the role of ILC2s are critical in the development of allergic asthma (62). ILC2s 
orchestrate dynamic interactions with airway epithelium and immune cells via various 
cytokines. Especially, IL-25, IL-33, and TSLP, which are derived from AECs by environmental 
factors, are main stimulators for ILC2s to produce IL-4, IL-5, IL-9, IL-13, and amphiregulin. 
These mediators enhance Th2 immune response by inducing Th2 cell differentiation, 
basophil and mast cell activation, and eosinophil recruitment as well as asthma symptoms by 
increasing mucus production and AHR (63). Especially, ILC2s contribute to steroid resistance 
of SA in a TSLP-dependent manner, suggesting the need of anti-TSLP Ab as a therapeutic 
option in SA (64). Although the roles of ILC1s and ILC3s are not fully understood in SA, they 
have been highlighted in the airway inflammation of non-type 2 asthma (65). Furthermore, 
recent studies have found that ILC1s and ILC3s affect M1 macrophage polarization in 
NA, while ILC2s are positively correlated with M2 macrophages and blood eosinophil 
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counts, indicating that they can determine asthma phenotypes by regulating macrophage 
polarization (66). Further investigations are needed to understand the interplay between 
ILC1/ILC3 and AECs/macrophages.

BIOLOGICS FOR THE TREATMENT OF SA

To date, various biologics have been approved as treatment options to target specific 
inflammatory pathways in the pathogenesis of SA (Fig. 2). Based on the clinical studies of 
each biologic (67-79), we discussed its mechanism of action and clinical efficacy (for both 
type 2 and non-type 2 inflammation) in asthma (Table 1).

Anti-IgE Ab
IgE released by B cells in response to allergens is essential for inducing immune cell 
activation, but omalizumab could reduce IgE-mediated responses as well as eosinophil 
counts in the airways by the following mechanism (80,81). Omalizumab is recognized as the 
first humanized mAb for managing allergic asthma inadequately controlled with the standard 
treatment by inhibiting IgE binding to its high-affinity receptor on mast cells and basophils 
(82). In addition to severe allergic asthma, the function of omalizumab in type 2-low and 
nonatopic asthma has been demonstrated (83,84), implying a possible role of omalizumab 
in various asthma phenotypes of SA. However, efforts to better understand each patient’s 
condition are necessary to predict which patients would have the greatest efficacy, although 
omalizumab has shown many potential benefits and long-term safety in various aspects.

Anti-IL-5 Ab
Two anti–IL-5 antibodies, including mepolizumab, reslizumab, as well as one anti-IL-5 
receptor Ab, benralizumab are currently available for the treatment of severe eosinophilic 
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Figure 2. Potential biological targets in type 2 asthma. 
IL-4Rα, interleukin 4 receptor subunit alpha; IL-5Rα, interleukin 5 receptor subunit alpha.
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asthma. All these biologics have been shown to be effective in managing type 2 asthma with 
eosinophilic inflammation; however, they are different in mechanisms of action as well as in 
pharmacokinetic and pharmacodynamic profiles.

Mepolizumab is a humanized mAb against IL-5 and targets severe eosinophilic asthma with 
higher blood eosinophil count (>150 cells/µl). The efficacy and safety of mepolizumab have 
been validated by various randomized controlled trials. It improves clinical outcomes, such 
as reduction in blood eosinophil counts, the frequency of asthma exacerbation, and oral 
corticosteroids (OCS) use as well as improvement in lung function and quality of life (85,86). 
Especially, its effect is greater in asthmatic patients with high blood eosinophil count, low 
body mass index, or no smoking experience. Therefore, it is recommended for the treatment 
of type 2 SA (with higher blood eosinophil counts) as a therapeutic option at step 5 of the 
recent Global Initiative for Asthma (GINA) guideline (87).

Reslizumab is a humanized anti-IL-5 mAb administered intravenously for patients with 
eosinophilic asthma who are in uncontrolled status even on high-dose ICS and additional 
controllers. Randomized controlled trials demonstrated that this drug could reduce the 
frequency of asthma exacerbation, short-acting β-agonist/OCS use as well as improve lung 
functions. In particular, the effect of reslizumab is prominent in asthmatic patients with high 
blood eosinophil counts (>400 cells/µl). Therefore, it is recommended as a therapeutic option 
for patients with severe eosinophilic asthma at step 5 of the recent GINA guideline (88-90).

https://doi.org/10.4110/in.2022.22.e45
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Table 1. Summary of specific mechanisms and clinical efficacy of current biologics in asthma
Biologics Target Mechanism of action Anticipated effect Clinical application Ref.
Omalizumab IgE Inhibits free IgE from binding 

to FcεRI on mast cells and 
basophils

• Reduction in asthma exacerbation
• Improvement in FEV1

• Improvement in QoL
• ICS/OCS-sparing effect

•  Moderate/severe allergic asthma 
uncontrolled with step 4/5 treatment

(67,68)

• Childhood-onset asthma

Mepolizumab IL-5 Prevents IL-5 from binding to 
its receptor

• Reduction in severe exacerbation •  Severe asthma with high blood eosinophils 
(≥ 150/μl)

(68-70)
• Improvement in QoL
• OCS-sparing effect

Reslizumab IL-5 Prevents IL-5 from binding to 
its receptor

• Reduction in asthma exacerbation •  Adult onset, severe eosinophilic asthma 
with high blood eosinophils (≥ 400/μl)

(71)
• Improvement in FEV1

• Improvement in QoL
Benarlizumab IL-5Rα Targets the α subunit of 

IL-5R on eosinophils for their 
apoptosis by ADCC

• Reduction in blood eosinophil count •  Severe asthma with high blood eosinophils 
(≥ 300/μl)

(72-74)
• Reduction in asthma exacerbation
• Improvement in FEV1

• OCS-sparing effect
Dupilumab IL-4R Targets the α subunit of 

IL-4R for blocking IL-4 and 
IL-13 signaling pathway

• Reduction in blood eosinophil count •  Severe eosinophilic/type 2 asthma with 
high blood eosinophils (≥ 150/μl) or FeNO 
(≥ 25 ppb)

(68,75)
• Reduction in severe exacerbation
• Improvement in FEV1

• Improvement in QoL
• OCS-sparing effect

Itepekimab IL-33 Inhibits IL-33 from binding to 
its receptor (ST2)

•  Reduction in blood eosinophil count and 
total IgE levels

•  Moderate-to-severe asthma (more effective 
in combination with dupilumab in type 2 
asthma)

(76)

• Improvement in FEV1 and FeNO
• Improvement in QoL

Astegolimab IL-33R (ST2) Blocks the receptor of IL-33 
(ST2)

• Reduction in asthma exacerbation •  Type 2-low asthma with low blood 
eosinophils (< 300 μl)

(77)
• Improvement in FEV1

Tezepelumab TSLP Prevents TSLP from binding 
to its receptor

•  Reduction in blood eosinophil count and 
total IgE levels

•  Severe asthma with severe exacerbation 
(regardless of high or low T2 markers)

(78,79)

• Reduction in asthma exacerbation
• Improvement in FEV1 and FeNO
• Improvement in QoL

ADCC, antibody-dependent cellular cytotoxicity; FcεRI, Fc epsilon receptor I alpha; FEV1, forced expiratory volume in 1 second; ICS, inhaled corticosteroids; OCS, 
oral corticosteroids; ppb, parts per billion; QoL, quality of life; ST2, suppression of tumorigenicity 2.
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Benralizumab targets the α subunit of the IL-5 receptor expressed on eosinophils and 
basophils and induces their apoptosis by Ab-dependent cell-mediated cytotoxicity. Thus, it 
has strengths of directly killing eosinophils resident in tissues as well as circulating in blood. 
Several studies have shown that benralizumb reduces blood eosinophil rapider and more 
effectively than other anti-IL-5 biologics. Moreover, it decreases asthma exacerbation rate 
and OCS dose with lung function improvement in patients with severe eosinophilic asthma 
(91). However, the evidence for the safety of long-term use is still controversial because of its 
immunogenicity response and strong effect on eosinophil depletion (85,92). Current GINA 
guideline recommends this drug for patients with severe eosinophilic asthma with higher 
blood eosinophil counts (>300 cells/µl) at the step 5.

Anti-IL-4/IL-13 Ab
Dupilumab is a humanized mAb targeting the α subunit of the IL-4 receptor, which blocks 
signaling cascade induced by both IL-4 and IL-13 involving IgE production, immune cell 
recruitment, goblet cell hyperplasia, and airway remodeling in SA (93). Randomized clinical 
trials found that asthmatic patients who received dupilumab have significantly lower 
asthma exacerbation rates, improved lung function, and better asthma controls. Although 
dupilumab has some side effects, including injection site reaction and blood eosinophilia, 
greater efficacy has been shown in patients with higher baseline eosinophil counts and FeNO 
values, representing type 2 phenotype (75). Furthermore, inhaled recombinant IL-4 receptor 
improved lung function and asthmatic symptoms even after corticosteroid withdrawal in 
persistent asthma (94). Although these biologics may have advantages in that it blocks IL-4/
IL-13 which reduce type 2 airway inflammation in AECs, further understanding on their 
mechanisms and any biomarkers predicting favorable responders are essential to elucidate 
the greatest benefit from a specific biologic for each patient (95-97).

Anti-IL-33/TSLP Ab
Currently, the development of new biologics targeting epithelial cell-derived cytokines (known 
as alarmins), including IL-33 and TSLP, is undergoing to regulate alternative pathophysiological 
pathways, because AECs are major targets as well as immune cells in patients having type 2 
or non-type 2 asthma. These biologics are involved in the upstream of immune responses, 
affecting both innate and adaptive immunity in the airways. Itepekimab is a humanized mAb 
against IL-33 which binds to the IL-33 receptor complex, regulating downstream signaling for 
activation of immune systems. After treatment with itepekimab, improved lung function in 
patients with moderate-to-severe asthma has been noted in a phase 2 trial (76). Furthermore, 
astegolimab, a novel mAb targeting the receptor for IL-33 (suppression of tumorigenicity 
2 [ST2]), was found to be effective in uncontrolled SA. In phase 2 trials, its subcutaneous 
administration reduced asthma exacerbation rates and improved lung functions with safety 
in patients with type 2-low asthma (showing low blood eosinophil counts, <300 cells/µl) 
(77). Tezepelumab is a humanized mAb that binds to TSLP, inhibiting its interaction with the 
TSLP receptor complex (98). In a phase 2 trial, tezepelumab showed significant reduction in 
asthma exacerbation rates, IgE levels and FeNO values in adult asthmatic patients, regardless 
of baseline eosinophil counts (78). Moreover, patients with severe uncontrolled asthma who 
received tezepelumab also showed lower asthma exacerbation rates, but higher lung function 
with health-related quality of life in a phase 3 trial (79). In addition, a recent clinical trial have 
shown the effect of an inhaled anti-TSLP (CSJ117) on reducing bronchoconstriction and sputum 
eosinophils as well as on improving FeNO levels in patients with allergic asthma (99). These 
therapeutic agents most likely have functions in patients with type 2 asthma; however, it is 
expected to be useful in those without evidence of eosinophilic inflammation.
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New potential biologics
Eotaxin-1 is known as a chemoattractant for eosinophils, inducing their activation and 
recruitment into the inflamed site. Bertilimumab, a human mAb against eotaxin-1, is developed 
as a novel therapeutic biologic for bullous pemphigoid which is an autoimmune skin disease 
characterized by dermal and blood eosinophilia. Recently, its efficacy and safety have been 
proved in a phase 2a trial (NCT02226146), reducing serum ECP levels and disease severity 
with a steroid-sparing effect. Based on these results, bertilimumab is under current studies 
for allergic disease, such as atopic dermatitis, rhinitis, and asthma. Considering higher blood 
concentrations of eotaxin-1 in patients with asthma, bertilimumab can be a promising biologic 
for severe eosinophilic asthma with further studies for its clinical efficacy (100,101).

FUTURE DIRECTIONS

SA patients still suffer from serious modality and high mortality. They are broadly divided 
into type 2 and non-type 2 asthma; however, this classification may not be appropriate given 
the diversity of its phenotypes. Therefore, ongoing studies on dissecting the underlying 
immunological mechanisms of SA will enable us to further identify multiple phenotypes/
endotypes of SA, an essential step to achieving the precision medicine. The major goal in 
the management of SA is to prevent asthma exacerbation and lung function decline, which 
is possible by modifying underlying inflammatory mechanisms. Recent biologics (single 
or combined use) have some benefits for modifying disease properties. Further research 
on understanding immunological mechanisms and validating new therapeutic targets are 
expected to address medical unmet needs in SA.
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