DOI QR코드

DOI QR Code

1,3-Dibenzyl-5-Fluorouracil Prevents Ovariectomy-Induced Bone Loss by Suppressing Osteoclast Differentiation

  • Hyoeun Jeon (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Jungeun Yu (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Jung Me Hwang (Center for Genomic Integrity, Institute for Basic Science) ;
  • Hye-Won Park (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Jiyeon Yu (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Zee-Won Lee (bHLBIO) ;
  • Taesoo Kim (Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Jaerang Rho (Department of Microbiology and Molecular Biology, Chungnam National University)
  • Received : 2022.03.15
  • Accepted : 2022.07.27
  • Published : 2022.10.31

Abstract

Osteoclasts (OCs) are clinically important cells that resorb bone matrix. Accelerated bone destruction by OCs is closely linked to the development of metabolic bone diseases. In this study, we screened novel chemical inhibitors targeting OC differentiation to identify drug candidates for metabolic bone diseases. We identified that 1,3-dibenzyl-5-fluorouracil, also named OCI-101, is a novel inhibitor of osteoclastogenesis. The formation of multinucleated OCs is reduced by treatment with OCI-101 in a dose-dependent manner. OCI-101 inhibited the expression of OC markers via downregulation of receptor activator of NF-κB ligand and M-CSF signaling pathways. Finally, we showed that OCI-101 prevents ovariectomy-induced bone loss by suppressing OC differentiation in mice. Hence, these results demonstrated that OCI-101 is a good drug candidate for treating metabolic bone diseases.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and was funded by the Ministry of Education (NRF-2019R1A2C1084311, 2019M3F6A1109486 and 2022R1A2C1004076).

References

  1. Amarasekara DS, Kim S, Rho J. Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci 2021;22:2851.
  2. Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J. Regulation of osteoclast differentiation by cytokine networks. Immune Netw 2018;18:e8.
  3. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 2006;24:33-63. https://doi.org/10.1146/annurev.immunol.24.021605.090646
  4. Amarasekara DS, Yu J, Rho J. Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J Immunol Res 2015;2015:832127.
  5. Darnay BG, Besse A, Poblenz AT, Lamothe B, Jacoby JJ. TRAFs in RANK signaling. Adv Exp Med Biol 2007;597:152-159. https://doi.org/10.1007/978-0-387-70630-6_12
  6. Kim N, Takami M, Rho J, Josien R, Choi Y. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med 2002;195:201-209. https://doi.org/10.1084/jem.20011681
  7. Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, et al. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med 2006;12:1403-1409. https://doi.org/10.1038/nm1514
  8. Rho J, Altmann CR, Socci ND, Merkov L, Kim N, So H, Lee O, Takami M, Brivanlou AH, Choi Y. Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis. DNA Cell Biol 2002;21:541-549. https://doi.org/10.1089/104454902320308915
  9. Ji MX, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med 2015;1:9-13.
  10. Riggs BL. The mechanisms of estrogen regulation of bone resorption. J Clin Invest 2000;106:1203-1204. https://doi.org/10.1172/JCI11468
  11. Pfeilschifter J. Hormone replacement and selective estrogen receptor modulators (SERMS) in the prevention and treatment of postmenopausal osteoporosis. Orthopade 2001;30:462-472. https://doi.org/10.1007/s001320170079
  12. Migliaccio S, Brama M, Spera G. The differential effects of bisphosphonates, SERMS (selective estrogen receptor modulators), and parathyroid hormone on bone remodeling in osteoporosis. Clin Interv Aging 2007;2:55-64. https://doi.org/10.2147/ciia.2007.2.1.55
  13. Anastasilakis AD, Polyzos SA, Makras P. Therapy of endocrine disease: denosumab vs bisphosphonates for the treatment of postmenopausal osteoporosis. Eur J Endocrinol 2018;179:R31-R45. https://doi.org/10.1530/EJE-18-0056
  14. Khosla S, Bilezikian JP, Dempster DW, Lewiecki EM, Miller PD, Neer RM, Recker RR, Shane E, Shoback D, Potts JT. Benefits and risks of bisphosphonate therapy for osteoporosis. J Clin Endocrinol Metab 2012;97:2272-2282. https://doi.org/10.1210/jc.2012-1027
  15. Liberman UA, Weiss SR, Broll J, Minne HW, Quan H, Bell NH, Rodriguez-Portales J, Downs RW Jr, Dequeker J, Favus M, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 1995;333:1437-1443. https://doi.org/10.1056/NEJM199511303332201
  16. Ma S, Goh EL, Jin A, Bhattacharya R, Boughton OR, Patel B, Karunaratne A, Vo NT, Atwood R, Cobb JP, et al. Long-term effects of bisphosphonate therapy: perforations, microcracks and mechanical properties. Sci Rep 2017;7:43399.
  17. Zhang N, Zhang ZK, Yu Y, Zhuo Z, Zhang G, Zhang BT. Pros and cons of denosumab treatment for osteoporosis and implication for RANKL aptamer therapy. Front Cell Dev Biol 2020;8:325.
  18. Chandran T, Venkatachalam I. Efficacy and safety of denosumab compared to bisphosphonates in improving bone strength in postmenopausal osteoporosis: a systematic review. Singapore Med J 2019;60:364-378. https://doi.org/10.11622/smedj.2019028
  19. Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, Satterfield S, Wallace RB, Bauer DC, Palermo L, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA 2006;296:2927-2938. https://doi.org/10.1001/jama.296.24.2927
  20. Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR, Czerwinski E, FahrleitnerPammer A, Kendler DL, Lippuner K, et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol 2017;5:513-523. https://doi.org/10.1016/S2213-8587(17)30138-9
  21. Lorentzon M. Treating osteoporosis to prevent fractures: current concepts and future developments. J Intern Med 2019;285:381-394. https://doi.org/10.1111/joim.12873
  22. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Wang H, Liu Y, San Martin J. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab 2008;93:2149-2157. https://doi.org/10.1210/jc.2007-2814
  23. Kim B, Cho YJ, Lim W. Osteoporosis therapies and their mechanisms of action (review). Exp Ther Med 2021;22:1379.
  24. Wu J, Zhang Q, Yan G, Jin X. Denosumab compared to bisphosphonates to treat postmenopausal osteoporosis: a meta-analysis. J Orthop Surg 2018;13:194.
  25. Shin B, Yu J, Park ES, Choi S, Yu J, Hwang JM, Yun H, Chung YH, Hong KS, Choi JS, et al. Secretion of a truncated osteopetrosis-associated transmembrane protein 1 (OSTM1) mutant inhibits osteoclastogenesis through down-regulation of the B lymphocyte-induced maturation protein 1 (BLIMP1)-nuclear factor of activated T cells c1 (NFATc1) axis. J Biol Chem 2014;289:35868-35881. https://doi.org/10.1074/jbc.M114.589614
  26. Yu J, Yun H, Shin B, Kim Y, Park ES, Choi S, Yu J, Amarasekara DS, Kim S, Inoue J, et al. Interaction of tumor necrosis factor receptor-associated factor 6 (TRAF6) and Vav3 in the receptor activator of nuclear factor κB (RANK) signaling complex enhances osteoclastogenesis. J Biol Chem 2016;291:20643-20660. https://doi.org/10.1074/jbc.M116.728303
  27. Ha H, Shim KS, An H, Kim T, Ma JY. Water extract of Spatholobus suberectus inhibits osteoclast differentiation and bone resorption. BMC Complement Altern Med 2013;13:112.
  28. Yu J, Kim S, Lee N, Jeon H, Lee J, Takami M, Rho J. Pax5 negatively regulates osteoclastogenesis through downregulation of Blimp1. Int J Mol Sci 2021;22:2097.
  29. Kim T, Ha H, Kim N, Park ES, Rho J, Kim EC, Lorenzo J, Choi Y, Lee SH. ATP6v0d2 deficiency increases bone mass, but does not influence ovariectomy-induced bone loss. Biochem Biophys Res Commun 2010;403:73-78. https://doi.org/10.1016/j.bbrc.2010.10.117
  30. Yamamoto M, Gohda J, Akiyama T, Inoue JI. TNF receptor-associated factor 6 (TRAF6) plays crucial roles in multiple biological systems through polyubiquitination-mediated NF-κB activation. Proc Jpn Acad Ser B Phys Biol Sci 2021;97:145-160. https://doi.org/10.2183/pjab.97.009
  31. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nat Med 1997;3:1285-1289. https://doi.org/10.1038/nm1197-1285
  32. Xing L, Bushnell TP, Carlson L, Tai Z, Tondravi M, Siebenlist U, Young F, Boyce BF. NF-κB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J Bone Miner Res 2002;17:1200-1210. https://doi.org/10.1359/jbmr.2002.17.7.1200
  33. Negishi-Koga T, Takayanagi H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 2009;231:241-256. https://doi.org/10.1111/j.1600-065X.2009.00821.x
  34. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017;2:17023.
  35. Lawrence T, Bebien M, Liu GY, Nizet V, Karin M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 2005;434:1138-1143. https://doi.org/10.1038/nature03491
  36. Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1998;1:661-671. https://doi.org/10.1016/S1097-2765(00)80066-0
  37. Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone 2007;40:251-264. https://doi.org/10.1016/j.bone.2006.09.023
  38. Kim H, Choi HK, Shin JH, Kim KH, Huh JY, Lee SA, Ko CY, Kim HS, Shin HI, Lee HJ, et al. Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J Clin Invest 2009;119:813-825. https://doi.org/10.1172/JCI36809
  39. Mansky KC, Sankar U, Han J, Ostrowski MC. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-κB ligand signaling. J Biol Chem 2002;277:11077-11083. https://doi.org/10.1074/jbc.M111696200
  40. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-κB ligand (RANKL). J Biol Chem 2000;275:31155-31161. https://doi.org/10.1074/jbc.M001229200
  41. David JP, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF. JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci 2002;115:4317-4325. https://doi.org/10.1242/jcs.00082
  42. Lee K, Seo I, Choi MH, Jeong D. Roles of mitogen-activated protein kinases in osteoclast biology. Int J Mol Sci 2018;19:3004.
  43. Sundaram K, Nishimura R, Senn J, Youssef RF, London SD, Reddy SV. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation. Exp Cell Res 2007;313:168-178. https://doi.org/10.1016/j.yexcr.2006.10.001
  44. Wagner EF, Matsuo K. Signalling in osteoclasts and the role of Fos/AP1 proteins. Ann Rheum Dis 2003;62 Suppl 2:ii83-ii85. https://doi.org/10.1136/ard.62.suppl_2.ii83
  45. Meissner JD, Freund R, Krone D, Umeda PK, Chang KC, Gros G, Scheibe RJ. Extracellular signal-regulated kinase 1/2-mediated phosphorylation of p300 enhances myosin heavy chain I/β gene expression via acetylation of nuclear factor of activated T cells c1. Nucleic Acids Res 2011;39:5907-5925. https://doi.org/10.1093/nar/gkr162
  46. Nakamura H, Hirata A, Tsuji T, Yamamoto T. Role of osteoclast extracellular signal-regulated kinase (ERK) in cell survival and maintenance of cell polarity. J Bone Miner Res 2003;18:1198-1205. https://doi.org/10.1359/jbmr.2003.18.7.1198
  47. He Y, Staser K, Rhodes SD, Liu Y, Wu X, Park SJ, Yuan J, Yang X, Li X, Jiang L, et al. Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One 2011;6:e24780.
  48. Bradley EW, Ruan MM, Vrable A, Oursler MJ. Pathway crosstalk between Ras/Raf and PI3K in promotion of M-CSF-induced MEK/ERK-mediated osteoclast survival. J Cell Biochem 2008;104:1439-1451. https://doi.org/10.1002/jcb.21719
  49. Ross FP. M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann N Y Acad Sci 2006;1068:110-116. https://doi.org/10.1196/annals.1346.014