DOI QR코드

DOI QR Code

Targeted Immunotherapy for Autoimmune Disease

  • Seung Min Jung (Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Wan-Uk Kim (Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea)
  • Received : 2022.01.26
  • Accepted : 2022.02.10
  • Published : 2022.02.28

Abstract

In the past few decades, biological drugs and small molecule inhibitors targeting inflammatory cytokines, immune cells, and intracellular kinases have become the standard-of-care to treat autoimmune diseases. Inhibition of TNF, IL-6, IL-17, and IL-23 has revolutionized the treatment of autoimmune diseases, such as rheumatoid arthritis, ankylosing spondylitis, and psoriasis. B cell depletion therapy using anti-CD20 mAbs has shown promising results in patients with neuroinflammatory diseases, and inhibition of B cell survival factors is approved for treatment of systemic lupus erythematosus. Targeting co-stimulatory molecules expressed on Ag-presenting cells and T cells is also expected to have therapeutic potential in autoimmune diseases by modulating T cell function. Recently, small molecule kinase inhibitors targeting the JAK family, which is responsible for signal transduction from multiple receptors, have garnered great interest in the field of autoimmune and hematologic diseases. However, there are still unmet medical needs in terms of therapeutic efficacy and safety profiles. Emerging therapies aim to induce immune tolerance without compromising immune function, using advanced molecular engineering techniques.

Keywords

Acknowledgement

This work was supported by a grant from the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2015R1A3A2032927).

References

  1. Cooper GS, Bynum ML, Somers EC. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun 2009;33:197-207. https://doi.org/10.1016/j.jaut.2009.09.008
  2. Lagasse HA, Alexaki A, Simhadri VL, Katagiri NH, Jankowski W, Sauna ZE, Kimchi-Sarfaty C. Recent advances in (therapeutic protein) drug development. F1000 Res 2017;6:113.
  3. Top drugs and pharma companies by sales in 2020 [Internet]. Available at https://www.pharmacompass.com/radio-compass-blog/top-drugs-and-pharma-companies-by-sales-in-2020 [accessed on 21 January 2022].
  4. Zarrin AA, Bao K, Lupardus P, Vucic D. Kinase inhibition in autoimmunity and inflammation. Nat Rev Drug Discov 2021;20:39-63. https://doi.org/10.1038/s41573-020-0082-8
  5. Attwood MM, Fabbro D, Sokolov AV, Knapp S, Schioth HB. Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov 2021;20:839-861. https://doi.org/10.1038/s41573-021-00252-y
  6. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol 2017;18:716-724. https://doi.org/10.1038/ni.3731
  7. Wahren-Herlenius M, Dorner T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet 2013;382:819-831.
  8. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 2015;15:471-485. https://doi.org/10.1038/nri3865
  9. Ma WT, Gao F, Gu K, Chen DK. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front Immunol 2019;10:1140.
  10. Jiang J, Zhao M, Chang C, Wu H, Lu Q. Type I interferons in the pathogenesis and treatment of autoimmune diseases. Clin Rev Allergy Immunol 2020;59:248-272. https://doi.org/10.1007/s12016-020-08798-2
  11. Zhu J, Paul WE. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev 2010;238:247-262. https://doi.org/10.1111/j.1600-065X.2010.00951.x
  12. Caricchio R, Abbate A, Gordeev I, Meng J, Hsue PY, Neogi T, Arduino R, Fomina D, Bogdanov R, Stepanenko T, et al. Effect of canakinumab vs placebo on survival without invasive mechanical ventilation in patients hospitalized with severe COVID-19: a randomized clinical trial. JAMA 2021;326:230-239. https://doi.org/10.1001/jama.2021.9508
  13. Aletaha D, Bingham CO 3rd, Tanaka Y, Agarwal P, Kurrasch R, Tak PP, Popik S. Efficacy and safety of sirukumab in patients with active rheumatoid arthritis refractory to anti-TNF therapy (SIRROUND-T): a randomised, double-blind, placebo-controlled, parallel-group, multinational, phase 3 study. Lancet 2017;389:1206-1217. https://doi.org/10.1016/S0140-6736(17)30401-4
  14. Takeuchi T, Thorne C, Karpouzas G, Sheng S, Xu W, Rao R, Fei K, Hsu B, Tak PP. Sirukumab for rheumatoid arthritis: the phase III SIRROUND-D study. Ann Rheum Dis 2017;76:2001-2008. https://doi.org/10.1136/annrheumdis-2017-211328
  15. Nasonov E, Fatenejad S, Feist E, Ivanova M, Korneva E, Krechikova DG, Maslyanskiy AL, Samsonov M, Stoilov R, Zonova EV, et al. Olokizumab, a monoclonal antibody against interleukin 6, in combination with methotrexate in patients with rheumatoid arthritis inadequately controlled by methotrexate: efficacy and safety results of a randomised controlled phase III study. Ann Rheum Dis 2021. doi: 10.1136/annrheumdis-2021-219876.
  16. Mease PJ, Gottlieb AB, Berman A, Drescher E, Xing J, Wong R, Banerjee S. The efficacy and safety of clazakizumab, an anti-interleukin-6 monoclonal antibody, in a phase IIb study of adults with active psoriatic arthritis. Arthritis Rheumatol 2016;68:2163-2173. https://doi.org/10.1002/art.39700
  17. Zhang C, Zhang M, Qiu W, Ma H, Zhang X, Zhu Z, Yang CS, Jia D, Zhang TX, Yuan M, et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol 2020;19:391-401. https://doi.org/10.1016/S1474-4422(20)30070-3
  18. Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, Criner GJ, Kaplan-Lewis E, Baden R, Pandit L, et al. Tocilizumab in patients hospitalized with COVID-19 pneumonia. N Engl J Med 2021;384:20-30. https://doi.org/10.1056/NEJMoa2030340
  19. Rosas IO, Brau N, Waters M, Go RC, Hunter BD, Bhagani S, Skiest D, Aziz MS, Cooper N, Douglas IS, et al. Tocilizumab in hospitalized patients with severe COVID-19 pneumonia. N Engl J Med 2021;384:1503-1516. https://doi.org/10.1056/NEJMoa2028700
  20. Lescure FX, Honda H, Fowler RA, Lazar JS, Shi G, Wung P, Patel N, Hagino O, Bazzalo IJ, Casas MM, et al. Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med 2021;9:522-532. https://doi.org/10.1016/S2213-2600(21)00099-0
  21. Deodhar A, Blanco R, Dokoupilova E, Hall S, Kameda H, Kivitz AJ, Poddubnyy D, van de Sande M, Wiksten AS, Porter BO, et al. Improvement of signs and symptoms of nonradiographic axial spondyloarthritis in patients treated with secukinumab: primary results of a randomized, placebo-controlled phase iii study. Arthritis Rheumatol 2021;73:110-120. https://doi.org/10.1002/art.41477
  22. Wei JC, Kim TH, Kishimoto M, Ogusu N, Jeong H, Kobayashi S. Efficacy and safety of brodalumab, an anti-IL17RA monoclonal antibody, in patients with axial spondyloarthritis: 16-week results from a randomised, placebo-controlled, phase 3 trial. Ann Rheum Dis 2021;80:1014-1021. https://doi.org/10.1136/annrheumdis-2020-219406
  23. Mease PJ, Helliwell PS, Hjuler KF, Raymond K, McInnes I. Brodalumab in psoriatic arthritis: results from the randomised phase III AMVISION-1 and AMVISION-2 trials. Ann Rheum Dis 2021;80:185-193. https://doi.org/10.1136/annrheumdis-2019-216835
  24. Gordon KB, Foley P, Krueger JG, Pinter A, Reich K, Vender R, Vanvoorden V, Madden C, White K, Cioffi C, et al. Bimekizumab efficacy and safety in moderate to severe plaque psoriasis (BE READY): a multicentre, double-blind, placebo-controlled, randomised withdrawal phase 3 trial. Lancet 2021;397:475-486. https://doi.org/10.1016/S0140-6736(21)00126-4
  25. Warren RB, Blauvelt A, Bagel J, Papp KA, Yamauchi P, Armstrong A, Langley RG, Vanvoorden V, De Cuyper D, Cioffi C, et al. Bimekizumab versus adalimumab in plaque psoriasis. N Engl J Med 2021;385:130-141. https://doi.org/10.1056/NEJMoa2102388
  26. Ostor A, Van den Bosch F, Papp K, Asnal C, Blanco R, Aelion J, Alperovich G, Lu W, Wang Z, Soliman AM, et al. Efficacy and safety of risankizumab for active psoriatic arthritis: 24-week results from the randomised, double-blind, phase 3 KEEPsAKE 2 trial. Ann Rheum Dis 2022;81:351-358. https://doi.org/10.1136/annrheumdis-2021-221048
  27. Kristensen LE, Keiserman M, Papp K, McCasland L, White D, Lu W, Wang Z, Soliman AM, Eldred A, Barcomb L, et al. Efficacy and safety of risankizumab for active psoriatic arthritis: 24-week results from the randomised, double-blind, phase 3 KEEPsAKE 1 trial. Ann Rheum Dis 2022;81:225-231. https://doi.org/10.1136/annrheumdis-2021-221019
  28. Werth VP, Joly P, Mimouni D, Maverakis E, Caux F, Lehane P, Gearhart L, Kapre A, Pordeli P, Chen DM; PEMPHIX Study Group. Rituximab versus mycophenolate mofetil in patients with pemphigus vulgaris. N Engl J Med 2021;384:2295-2305. https://doi.org/10.1056/NEJMoa2028564
  29. Bowman SJ, Fox R, Dorner T, Mariette X, Papas A, Grader-Beck T, Fisher BA, Barcelos F, De Vita S, Schulze-Koops H, et al. Safety and efficacy of subcutaneous ianalumab (VAY736) in patients with primary Sjogren's syndrome: a randomised, double-blind, placebo-controlled, phase 2b dose-finding trial. Lancet 2022;399:161-171. https://doi.org/10.1016/S0140-6736(21)02251-0
  30. Mease PJ, Gottlieb AB, van der Heijde D, FitzGerald O, Johnsen A, Nys M, Banerjee S, Gladman DD. Efficacy and safety of abatacept, a T-cell modulator, in a randomised, double-blind, placebo-controlled, phase III study in psoriatic arthritis. Ann Rheum Dis 2017;76:1550-1558. https://doi.org/10.1136/annrheumdis-2016-210724
  31. Ruperto N, Brunner HI, Synoverska O, Ting TV, Mendoza CA, Spindler A, Vyzhga Y, Marzan K, Grebenkina L, Tirosh I, et al. Tofacitinib in juvenile idiopathic arthritis: a double-blind, placebocontrolled, withdrawal phase 3 randomised trial. Lancet 2021;398:1984-1996. https://doi.org/10.1016/S0140-6736(21)01255-1
  32. Deodhar A, Sliwinska-Stanczyk P, Xu H, Baraliakos X, Gensler LS, Fleishaker D, Wang L, Wu J, Menon S, Wang C, et al. Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study. Ann Rheum Dis 2021;80:1004-1013. https://doi.org/10.1136/annrheumdis-2020-219601
  33. Simpson EL, Forman S, Silverberg JI, Zirwas M, Maverakis E, Han G, Guttman-Yassky E, Marnell D, Bissonnette R, Waibel J, et al. Baricitinib in patients with moderate-to-severe atopic dermatitis: results from a randomized monotherapy phase 3 trial in the United States and Canada (BREEZE-AD5). J Am Acad Dermatol 2021;85:62-70. https://doi.org/10.1016/j.jaad.2021.02.028
  34. Reich K, Kabashima K, Peris K, Silverberg JI, Eichenfield LF, Bieber T, Kaszuba A, Kolodsick J, Yang FE, Gamalo M, et al. Efficacy and safety of baricitinib combined with topical corticosteroids for treatment of moderate to severe atopic dermatitis: a randomized clinical trial. JAMA Dermatol 2020;156:1333-1343. https://doi.org/10.1001/jamadermatol.2020.3260
  35. Sandborn WJ, Ghosh S, Panes J, Schreiber S, D'Haens G, Tanida S, Siffledeen J, Enejosa J, Zhou W, Othman AA, et al. Efficacy of upadacitinib in a randomized trial of patients with active ulcerative colitis. Gastroenterology 2020;158:2139-2149.e14. https://doi.org/10.1053/j.gastro.2020.02.030
  36. Guttman-Yassky E, Teixeira HD, Simpson EL, Papp KA, Pangan AL, Blauvelt A, Thaci D, Chu CY, Hong HC, Katoh N, et al. Once-daily upadacitinib versus placebo in adolescents and adults with moderate-to-severe atopic dermatitis (Measure Up 1 and Measure Up 2): results from two replicate double-blind, randomised controlled phase 3 trials. Lancet 2021;397:2151-2168. https://doi.org/10.1016/S0140-6736(21)00588-2
  37. Reich K, Teixeira HD, de Bruin-Weller M, Bieber T, Soong W, Kabashima K, Werfel T, Zeng J, Huang X, Hu X, et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2021;397:2169-2181. https://doi.org/10.1016/S0140-6736(21)00589-4
  38. Feagan BG, Danese S, Loftus EV Jr, Vermeire S, Schreiber S, Ritter T, Fogel R, Mehta R, Nijhawan S, Kempinski R, et al. Filgotinib as induction and maintenance therapy for ulcerative colitis (SELECTION): a phase 2b/3 double-blind, randomised, placebo-controlled trial. Lancet 2021;397:2372-2384. https://doi.org/10.1016/S0140-6736(21)00666-8
  39. Kruglov AA, Lampropoulou V, Fillatreau S, Nedospasov SA. Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells. J Immunol 2011;187:5660-5670. https://doi.org/10.4049/jimmunol.1100663
  40. Feldmann M. Translating molecular insights in autoimmunity into effective therapy. Annu Rev Immunol 2009;27:1-27. https://doi.org/10.1146/annurev-immunol-082708-100732
  41. Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 1991;10:4025-4031. https://doi.org/10.1002/j.1460-2075.1991.tb04978.x
  42. Atretkhany KN, Gogoleva VS, Drutskaya MS, Nedospasov SA. Distinct modes of TNF signaling through its two receptors in health and disease. J Leukoc Biol 2020;107:893-905. https://doi.org/10.1002/JLB.2MR0120-510R
  43. Fischer R, Kontermann RE, Pfizenmaier K. Selective targeting of TNF receptors as a novel therapeutic approach. Front Cell Dev Biol 2020;8:401.
  44. Conrad C, Di Domizio J, Mylonas A, Belkhodja C, Demaria O, Navarini AA, Lapointe AK, French LE, Vernez M, Gilliet M. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis. Nat Commun 2018;9:25.
  45. Talotta R, Berzi A, Atzeni F, Batticciotto A, Clerici M, Sarzi-Puttini P, Trabattoni D. Paradoxical expansion of Th1 and Th17 lymphocytes in rheumatoid arthritis following infliximab treatment: a possible explanation for a lack of clinical response. J Clin Immunol 2015;35:550-557. https://doi.org/10.1007/s10875-015-0182-0
  46. Salomon BL. Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat Rev Rheumatol 2021;17:487-504. https://doi.org/10.1038/s41584-021-00639-6
  47. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol 2019;15:612-632. https://doi.org/10.1038/s41584-019-0277-8
  48. von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE. Recognition of bacteria by inflammasomes. Annu Rev Immunol 2013;31:73-106. https://doi.org/10.1146/annurev-immunol-032712-095944
  49. Skendros P, Papagoras C, Mitroulis I, Ritis K. Autoinflammation: lessons from the study of familial Mediterranean fever. J Autoimmun 2019;104:102305.
  50. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 2019;50:778-795. https://doi.org/10.1016/j.immuni.2019.03.012
  51. Zahid A, Li B, Kombe AJ, Jin T, Tao J. Pharmacological inhibitors of the NLRP3 inflammasome. Front Immunol 2019;10:2538.
  52. Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benko S, Szucs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol 2021;17:585-595. https://doi.org/10.1038/s41584-021-00652-9
  53. Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol 2016;12:259-268. https://doi.org/10.1038/nrrheum.2015.179
  54. Choy EH, De Benedetti F, Takeuchi T, Hashizume M, John MR, Kishimoto T. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol 2020;16:335-345. https://doi.org/10.1038/s41584-020-0419-z
  55. Bataille R, Barlogie B, Lu ZY, Rossi JF, Lavabre-Bertrand T, Beck T, Wijdenes J, Brochier J, Klein B. Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma. Blood 1995;86:685-691.
  56. Gabay C, Emery P, van Vollenhoven R, Dikranian A, Alten R, Pavelka K, Klearman M, Musselman D, Agarwal S, Green J, et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet 2013;381:1541-1550. https://doi.org/10.1016/S0140-6736(13)60250-0
  57. Khanna D, Lin CJ, Furst DE, Goldin J, Kim G, Kuwana M, Allanore Y, Matucci-Cerinic M, Distler O, Shima Y, et al. Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med 2020;8:963-974. https://doi.org/10.1016/S2213-2600(20)30318-0
  58. Wallace DJ, Strand V, Merrill JT, Popa S, Spindler AJ, Eimon A, Petri M, Smolen JS, Wajdula J, Christensen J, et al. Efficacy and safety of an interleukin 6 monoclonal antibody for the treatment of systemic lupus erythematosus: a phase II dose-ranging randomised controlled trial. Ann Rheum Dis 2017;76:534-542. https://doi.org/10.1136/annrheumdis-2016-209668
  59. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235-238. https://doi.org/10.1038/nature04753
  60. Garbers C, Heink S, Korn T, Rose-John S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov 2018;17:395-412. https://doi.org/10.1038/nrd.2018.45
  61. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 1998;334:297-314. https://doi.org/10.1042/bj3340297
  62. Taniguchi K, Wu LW, Grivennikov SI, de Jong PR, Lian I, Yu FX, Wang K, Ho SB, Boland BS, Chang JT, et al. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 2015;519:57-62. https://doi.org/10.1038/nature14228
  63. Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T, Fujiwara H, Hirata M, Yamagami T, Nakahata T, et al. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci U S A 1996;93:407-411. https://doi.org/10.1073/pnas.93.1.407
  64. O'Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 2002;109 Suppl:S121-S131.
  65. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 2010;10:479-489. https://doi.org/10.1038/nri2800
  66. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity 2019;50:892-906. https://doi.org/10.1016/j.immuni.2019.03.021
  67. Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol 2017;18:612-621. https://doi.org/10.1038/ni.3742
  68. Akiyama S, Sakuraba A. Distinct roles of interleukin-17 and T helper 17 cells among autoimmune diseases. J Transl Autoimmun 2021;4:100104.
  69. Hirahara K, Poholek A, Vahedi G, Laurence A, Kanno Y, Milner JD, O'Shea JJ. Mechanisms underlying helper T-cell plasticity: implications for immune-mediated disease. J Allergy Clin Immunol 2013;131:1276-1287. https://doi.org/10.1016/j.jaci.2013.03.015
  70. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233-240. https://doi.org/10.1084/jem.20041257
  71. Maitra A, Shen F, Hanel W, Mossman K, Tocker J, Swart D, Gaffen SL. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc Natl Acad Sci U S A 2007;104:7506-7511. https://doi.org/10.1073/pnas.0611589104
  72. Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D, Xiao J, Lu Y, Giltiay N, Liu J, et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 2007;8:247-256. https://doi.org/10.1038/ni1439
  73. Sieper J, Poddubnyy D, Miossec P. The IL-23-IL-17 pathway as a therapeutic target in axial spondyloarthritis. Nat Rev Rheumatol 2019;15:747-757. https://doi.org/10.1038/s41584-019-0294-7
  74. Hawkes JE, Yan BY, Chan TC, Krueger JG. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol 2018;201:1605-1613. https://doi.org/10.4049/jimmunol.1800013
  75. Genovese MC, Greenwald M, Cho CS, Berman A, Jin L, Cameron GS, Benichou O, Xie L, Braun D, Berclaz PY, et al. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol 2014;66:1693-1704. https://doi.org/10.1002/art.38617
  76. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000;13:715-725. https://doi.org/10.1016/S1074-7613(00)00070-4
  77. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 2014;14:585-600. https://doi.org/10.1038/nri3707
  78. Floss DM, Schroder J, Franke M, Scheller J. Insights into IL-23 biology: from structure to function. Cytokine Growth Factor Rev 2015;26:569-578. https://doi.org/10.1016/j.cytogfr.2015.07.005
  79. Puccetti P, Belladonna ML, Grohmann U. Effects of IL-12 and IL-23 on antigen-presenting cells at the interface between innate and adaptive immunity. Crit Rev Immunol 2002;22:373-390. https://doi.org/10.1615/CritRevImmunol.v22.i5-6.20
  80. Ruiz de Morales JM, Puig L, Dauden E, Canete JD, Pablos JL, Martin AO, Juanatey CG, Adan A, Montalban X, Borruel N, et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: an updated review of the evidence focusing in controversies. Autoimmun Rev 2020;19:102429.
  81. Thorlacius GE, Wahren-Herlenius M, Ronnblom L. An update on the role of type I interferons in systemic lupus erythematosus and Sjogren's syndrome. Curr Opin Rheumatol 2018;30:471-481. https://doi.org/10.1097/BOR.0000000000000524
  82. Okanoue T, Sakamoto S, Itoh Y, Minami M, Yasui K, Sakamoto M, Nishioji K, Katagishi T, Nakagawa Y, Tada H, et al. Side effects of high-dose interferon therapy for chronic hepatitis C. J Hepatol 1996;25:283-291. https://doi.org/10.1016/S0168-8278(96)80113-9
  83. Chasset F, Arnaud L. Targeting interferons and their pathways in systemic lupus erythematosus. Autoimmun Rev 2018;17:44-52. https://doi.org/10.1016/j.autrev.2017.11.009
  84. Kalunian KC, Merrill JT, Maciuca R, McBride JM, Townsend MJ, Wei X, Davis JC Jr, Kennedy WP. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis 2016;75:196-202. https://doi.org/10.1136/annrheumdis-2014-206090
  85. Khamashta M, Merrill JT, Werth VP, Furie R, Kalunian K, Illei GG, Drappa J, Wang L, Greth W; CD1067 study investigators. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis 2016;75:1909-1916. https://doi.org/10.1136/annrheumdis-2015-208562
  86. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, Bae SC, Brohawn PZ, Pineda L, Berglind A, et al. Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med 2020;382:211-221. https://doi.org/10.1056/NEJMoa1912196
  87. Lee DS, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov 2021;20:179-199. https://doi.org/10.1038/s41573-020-00092-2
  88. Piccio L, Naismith RT, Trinkaus K, Klein RS, Parks BJ, Lyons JA, Cross AH. Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis. Arch Neurol 2010;67:707-714. https://doi.org/10.1001/archneurol.2010.99
  89. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004;350:2572-2581. https://doi.org/10.1056/NEJMoa032534
  90. Ivanov A, Beers SA, Walshe CA, Honeychurch J, Alduaij W, Cox KL, Potter KN, Murray S, Chan CH, Klymenko T, et al. Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lysosome-mediated cell death in human lymphoma and leukemia cells. J Clin Invest 2009;119:2143-2159. https://doi.org/10.1172/JCI37884
  91. Crickx E, Weill JC, Reynaud CA, Mahevas M. Anti-CD20-mediated B-cell depletion in autoimmune diseases: successes, failures and future perspectives. Kidney Int 2020;97:885-893. https://doi.org/10.1016/j.kint.2019.12.025
  92. Cree BA, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM, Fujihara K, Paul F, Cutter GR, Marignier R, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019;394:1352-1363. https://doi.org/10.1016/S0140-6736(19)31817-3
  93. Parodis I, Sjowall C, Jonsen A, Ramskold D, Zickert A, Frodlund M, Sohrabian A, Arnaud L, Ronnelid J, Malmstrom V, et al. Smoking and pre-existing organ damage reduce the efficacy of belimumab in systemic lupus erythematosus. Autoimmun Rev 2017;16:343-351. https://doi.org/10.1016/j.autrev.2017.02.005
  94. Shi F, Xue R, Zhou X, Shen P, Wang S, Yang Y. Telitacicept as a BLyS/APRIL dual inhibitor for autoimmune disease. Immunopharmacol Immunotoxicol 2021;43:666-673. https://doi.org/10.1080/08923973.2021.1973493
  95. Jeong S, Park SH. Co-stimulatory receptors in cancers and their implications for cancer immunotherapy. Immune Netw 2020;20:e3.
  96. Edner NM, Carlesso G, Rush JS, Walker LS. Targeting co-stimulatory molecules in autoimmune disease. Nat Rev Drug Discov 2020;19:860-883. https://doi.org/10.1038/s41573-020-0081-9
  97. Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 costimulation: from mechanism to therapy. Immunity 2016;44:973-988. https://doi.org/10.1016/j.immuni.2016.04.020
  98. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood 2018;131:58-67. https://doi.org/10.1182/blood-2017-06-741033
  99. Liu M, Yu Y, Hu S. A review on applications of abatacept in systemic rheumatic diseases. Int Immunopharmacol 2021;96:107612.
  100. Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E, Anderson D, Cowan S, Price K, Naemura J, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant 2005;5:443-453. https://doi.org/10.1111/j.1600-6143.2005.00749.x
  101. Douthwaite J, Moisan J, Privezentzev C, Soskic B, Sabbah S, Cohen S, Collinson A, England E, Huntington C, Kemp B, et al. A CD80-biased CTLA4-Ig fusion protein with superior in vivo efficacy by simultaneous engineering of affinity, selectivity, stability, and FcRn binding. J Immunol 2017;198:528-537. https://doi.org/10.4049/jimmunol.1600682
  102. Huber M, Kemmner S, Renders L, Heemann U. Should belatacept be the centrepiece of renal transplantation? Nephrol Dial Transplant 2016;31:1995-2002. https://doi.org/10.1093/ndt/gfw226
  103. Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, Banchereau J. Activation of human dendritic cells through CD40 cross-linking. J Exp Med 1994;180:1263-1272. https://doi.org/10.1084/jem.180.4.1263
  104. van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol 2000;67:2-17. https://doi.org/10.1002/jlb.67.1.2
  105. Foy TM, Laman JD, Ledbetter JA, Aruffo A, Claassen E, Noelle RJ. gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J Exp Med 1994;180:157-163. https://doi.org/10.1084/jem.180.1.157
  106. Fisher BA, Szanto A, Ng WF, Bombardieri M, Posch MG, Papas AS, Farag AM, Daikeler T, Bannert B, Kyburz D, et al. Assessment of the anti-CD40 antibody iscalimab in patients with primary Sjogren's syndrome: a multicentre, randomised, double-blind, placebo-controlled, proof-of-concept study. Lancet Rheumatol 2020;2:e142-e152. https://doi.org/10.1016/S2665-9913(19)30135-3
  107. Villarino AV, Kanno Y, O'Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 2017;18:374-384. https://doi.org/10.1038/ni.3691
  108. McLornan DP, Pope JE, Gotlib J, Harrison CN. Current and future status of JAK inhibitors. Lancet 2021;398:803-816. https://doi.org/10.1016/S0140-6736(21)00438-4
  109. Taylor PC, Keystone EC, van der Heijde D, Weinblatt ME, Del Carmen Morales L, Reyes Gonzaga J, Yakushin S, Ishii T, Emoto K, Beattie S, et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med 2017;376:652-662. https://doi.org/10.1056/NEJMoa1608345
  110. Papp K, Gordon K, Thaci D, Morita A, Gooderham M, Foley P, Girgis IG, Kundu S, Banerjee S. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med 2018;379:1313-1321. https://doi.org/10.1056/NEJMoa1806382
  111. Montalban X, Arnold DL, Weber MS, Staikov I, Piasecka-Stryczynska K, Willmer J, Martin EC, Dangond F, Syed S, Wolinsky JS; Evobrutinib Phase 2 Study Group. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med 2019;380:2406-2417. https://doi.org/10.1056/NEJMoa1901981
  112. Reich DS, Arnold DL, Vermersch P, Bar-Or A, Fox RJ, Matta A, Turner T, Wallstrom E, Zhang X, Mares M, et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2021;20:729-738. https://doi.org/10.1016/S1474-4422(21)00237-4
  113. FDA requires warnings about increased risk of serious heart-related events, cancer, blood clots, and death for JAK inhibitors that treat certain chronic inflammatory conditions [Internet]. Available at https://www.fda.gov/drugs/drug-safety-and-availability/fda-requires-warnings-about-increased-risk-serious-heart-related-events-cancer-blood-clots-and-death [accessed on 21 January 2022].
  114. June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018;359:1361-1365. https://doi.org/10.1126/science.aar6711
  115. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020;17:147-167. https://doi.org/10.1038/s41571-019-0297-y
  116. Mougiakakos D, Kronke G, Volkl S, Kretschmann S, Aigner M, Kharboutli S, Boltz S, Manger B, Mackensen A, Schett G. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N Engl J Med 2021;385:567-569. https://doi.org/10.1056/NEJMc2107725
  117. Orvain C, Boulch M, Bousso P, Allanore Y, Avouac J. Is there a place for chimeric antigen receptor-T cells in the treatment of chronic autoimmune rheumatic diseases? Arthritis Rheumatol 2021;73:1954-1965. https://doi.org/10.1002/art.41812
  118. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev 2019;34:45-55. https://doi.org/10.1016/j.blre.2018.11.002
  119. Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol 2018;18:648-659. https://doi.org/10.1038/s41577-018-0046-y
  120. Kolios AG, Tsokos GC, Klatzmann D. Interleukin-2 and regulatory T cells in rheumatic diseases. Nat Rev Rheumatol 2021;17:749-766. https://doi.org/10.1038/s41584-021-00707-x
  121. Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013;38:13-25. https://doi.org/10.1016/j.immuni.2013.01.004
  122. Churlaud G, Jimenez V, Ruberte J, Amadoudji Zin M, Fourcade G, Gottrand G, Casana E, Lambrecht B, Bellier B, Piaggio E, et al. Sustained stimulation and expansion of Tregs by IL2 control autoimmunity without impairing immune responses to infection, vaccination and cancer. Clin Immunol 2014;151:114-126. https://doi.org/10.1016/j.clim.2014.02.003
  123. Pinheiro-Rosa N, Torres L, de Almeida Oliveira M, Andrade-Oliveira MF, de Freitas Guimaraes MA, Coelho MM, de Lima Alves J, Maioli TU, Faria AMC. Oral tolerance as antigen-specific immunotherapy. Immunother Adv 2021;1:ltab017.
  124. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 2003;3:331-341. https://doi.org/10.1038/nri1057
  125. Faria AM, Weiner HL. Oral tolerance: therapeutic implications for autoimmune diseases. Clin Dev Immunol 2006;13:143-157. https://doi.org/10.1080/17402520600876804
  126. Ring S, Maas M, Nettelbeck DM, Enk AH, Mahnke K. Targeting of autoantigens to DEC205+ dendritic cells in vivo suppresses experimental allergic encephalomyelitis in mice. J Immunol 2013;191:2938-2947. https://doi.org/10.4049/jimmunol.1202592
  127. Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, Yap WT, Getts MT, Pleiss M, Luo X, King NJ, et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 2012;30:1217-1224. https://doi.org/10.1038/nbt.2434
  128. Moorman CD, Sohn SJ, Phee H. Emerging therapeutics for immune tolerance: tolerogenic vaccines, T cell therapy, and IL-2 therapy. Front Immunol 2021;12:657768.
  129. Freedman MS, Bar-Or A, Oger J, Traboulsee A, Patry D, Young C, Olsson T, Li D, Hartung HP, Krantz M, et al. A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS. Neurology 2011;77:1551-1560. https://doi.org/10.1212/WNL.0b013e318233b240
  130. Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, Bukur T, Akilli-Ozturk O, Kranz LM, Berger H, Petschenka J, et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 2021;371:145-153. https://doi.org/10.1126/science.aay3638