DOI QR코드

DOI QR Code

Lessons From the Success and Failure of Targeted Drugs for Rheumatoid Arthritis: Perspectives for Effective Basic and Translational Research

  • Mingyo Kim (Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital) ;
  • Yong-ho Choe (Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital) ;
  • Sang-il Lee (Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital)
  • Received : 2022.01.17
  • Accepted : 2022.02.16
  • Published : 2022.02.28

Abstract

Rheumatoid arthritis (RA) is a representative autoimmune disease that is primarily characterized by persistent inflammation and progressive destruction of synovial joints. RA has a complex and heterogeneous pathophysiology, involving interactions among various immune and joint stromal cells and a diverse network of cytokines and intracellular signaling pathways. With improved understanding of RA, over the past decades, therapeutic strategies have become considerably advanced and now included targeted molecular therapies, such as tumor necrosis factor inhibitors, IL-6 blockers, B-cell depletion agents, as well as inhibitors of T-cell co-stimulation and Janus kinases. However, a considerable proportion of RA patients experience refractory disease and interrupted treatment owing to the associated risk of developing serious infections and cancers. In contrast, although IL-1β, IL-17A, and p38α play significant roles in RA pathogenesis, several drugs targeting these factors have not been approved because of their low efficacy and severe adverse effects. In this review, we provide an overview of the working mechanism, advantages, and limitations of the currently available targeted drugs for RA. Additionally, we suggest potential mechanistic causes for clinically approved and failed drugs. Thus, this review provides perspectives on approaches for basic and translational studies that hold promise for identifying future next-generation therapeutics for RA.

Keywords

Acknowledgement

This study was supported by a grant from National Research Foundation of Korea (NRF-2020R1C1C1007944) and from the Korea Health Technology R&D project through the Korea Health Industry Development Institute (KHIDI) funded by the Korean Ministry of Health and Welfare (grant number: HI14C1277). We would like to thank Editage (www.editage.co.kr) for English language editing.

References

  1. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med 2011;365:2205-2219. https://doi.org/10.1056/NEJMra1004965
  2. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003;423:356-361. https://doi.org/10.1038/nature01661
  3. Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity 2017;46:183-196. https://doi.org/10.1016/j.immuni.2017.02.006
  4. Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol 2020;16:316-333. https://doi.org/10.1038/s41584-020-0413-5
  5. Smolen JS, Aletaha D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat Rev Rheumatol 2015;11:276-289. https://doi.org/10.1038/nrrheum.2015.8
  6. de Hair MJ, Jacobs JW, Schoneveld JL, van Laar JM. Difficult-to-treat rheumatoid arthritis: an area of unmet clinical need. Rheumatology (Oxford) 2018;57:1135-1144.
  7. Singh JA, Cameron C, Noorbaloochi S, Cullis T, Tucker M, Christensen R, Ghogomu ET, Coyle D, Clifford T, Tugwell P, et al. Risk of serious infection in biological treatment of patients with rheumatoid arthritis: a systematic review and meta-analysis. Lancet 2015;386:258-265. https://doi.org/10.1016/S0140-6736(14)61704-9
  8. Pundole X, Suarez-Almazor ME. Cancer and rheumatoid rrthritis. Rheum Dis Clin North Am 2020;46:445-462. https://doi.org/10.1016/j.rdc.2020.05.003
  9. Robertshaw HJ, Brennan FM. Release of tumour necrosis factor alpha (TNFalpha) by TNFalpha cleaving enzyme (TACE) in response to septic stimuli in vitro. Br J Anaesth 2005;94:222-228. https://doi.org/10.1093/bja/aei021
  10. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 2016;12:49-62. https://doi.org/10.1038/nrrheum.2015.169
  11. Finsterbusch M, Voisin MB, Beyrau M, Williams TJ, Nourshargh S. Neutrophils recruited by chemoattractants in vivo induce microvascular plasma protein leakage through secretion of TNF. J Exp Med 2014;211:1307-1314. https://doi.org/10.1084/jem.20132413
  12. Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA, Kelly S, Goodman SM, Tabechian D, Hughes LB, Salomon-Escoto K, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol 2019;20:928-942. https://doi.org/10.1038/s41590-019-0378-1
  13. Jung YK, Kang YM, Han S. Osteoclasts in the inflammatory arthritis: Implications for pathologic osteolysis. Immune Netw 2019;19:e2.
  14. Farrugia M, Baron B. The role of TNF-α in rheumatoid arthritis: a focus on regulatory T cells. J Clin Transl Res 2016;2:84-90. https://doi.org/10.18053/jctres.02.201603.005
  15. McInnes IB, Buckley CD, Isaacs JD. Cytokines in rheumatoid arthritis - shaping the immunological landscape. Nat Rev Rheumatol 2016;12:63-68. https://doi.org/10.1038/nrrheum.2015.171
  16. Asquith DL, Miller AM, McInnes IB, Liew FY. Animal models of rheumatoid arthritis. Eur J Immunol 2009;39:2040-2044. https://doi.org/10.1002/eji.200939578
  17. Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci U S A 1992;89:9784-9788. https://doi.org/10.1073/pnas.89.20.9784
  18. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 2018;6:15.
  19. Akiho H, Yokoyama A, Abe S, Nakazono Y, Murakami M, Otsuka Y, Fukawa K, Esaki M, Niina Y, Ogino H. Promising biological therapies for ulcerative colitis: a review of the literature. World J Gastrointest Pathophysiol 2015;6:219-227. https://doi.org/10.4291/wjgp.v6.i4.219
  20. Elliott MJ, Maini RN, Feldmann M, Long-Fox A, Charles P, Katsikis P, Brennan FM, Walker J, Bijl H, Ghrayeb J, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum 1993;36:1681-1690. https://doi.org/10.1002/art.1780361206
  21. Braun J, Kay J. The safety of emerging biosimilar drugs for the treatment of rheumatoid arthritis. Expert Opin Drug Saf 2017;16:289-302. https://doi.org/10.1080/14740338.2017.1273899
  22. Choy E, McKenna F, Vencovsky J, Valente R, Goel N, Vanlunen B, Davies O, Stahl HD, Alten R. Certolizumab pegol plus MTX administered every 4 weeks is effective in patients with RA who are partial responders to MTX. Rheumatology (Oxford) 2012;51:1226-1234. https://doi.org/10.1093/rheumatology/ker519
  23. Goel N, Stephens S. Certolizumab pegol. MAbs 2010;2:137-147. https://doi.org/10.4161/mabs.2.2.11271
  24. Wallis RS. Tumour necrosis factor antagonists: structure, function, and tuberculosis risks. Lancet Infect Dis 2008;8:601-611. https://doi.org/10.1016/S1473-3099(08)70227-5
  25. Baecklund E, Iliadou A, Askling J, Ekbom A, Backlin C, Granath F, Catrina AI, Rosenquist R, Feltelius N, Sundstrom C, et al. Association of chronic inflammation, not its treatment, with increased lymphoma risk in rheumatoid arthritis. Arthritis Rheum 2006;54:692-701. https://doi.org/10.1002/art.21675
  26. Maneiro JR, Souto A, Gomez-Reino JJ. Risks of malignancies related to tofacitinib and biological drugs in rheumatoid arthritis: systematic review, meta-analysis, and network meta-analysis. Semin Arthritis Rheum 2017;47:149-156. https://doi.org/10.1016/j.semarthrit.2017.02.007
  27. Keystone EC, Schiff MH, Kremer JM, Kafka S, Lovy M, DeVries T, Burge DJ. Once-weekly administration of 50 mg etanercept in patients with active rheumatoid arthritis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2004;50:353-363. https://doi.org/10.1002/art.20019
  28. Ma X, Xu S. TNF inhibitor therapy for rheumatoid arthritis. Biomed Rep 2013;1:177-184. https://doi.org/10.3892/br.2012.42
  29. Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol 2010;22:347-352. https://doi.org/10.1093/intimm/dxq030
  30. Pop VV, Seicean A, Lupan I, Samasca G, Burz CC. IL-6 roles - Molecular pathway and clinical implication in pancreatic cancer - A systemic review. Immunol Lett 2017;181:45-50. https://doi.org/10.1016/j.imlet.2016.11.010
  31. Rose-John S, Neurath MF. IL-6 trans-signaling: the heat is on. Immunity 2004;20:2-4. https://doi.org/10.1016/S1074-7613(04)00003-2
  32. Jones SA, Scheller J, Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest 2011;121:3375-3383. https://doi.org/10.1172/JCI57158
  33. Mihara M, Moriya Y, Kishimoto T, Ohsugi Y. Interleukin-6 (IL-6) induces the proliferation of synovial fibroblastic cells in the presence of soluble IL-6 receptor. Br J Rheumatol 1995;34:321-325. https://doi.org/10.1093/rheumatology/34.4.321
  34. Heink S, Yogev N, Garbers C, Herwerth M, Aly L, Gasperi C, Husterer V, Croxford AL, Moller-Hackbarth K, Bartsch HS, et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat Immunol 2017;18:74-85. https://doi.org/10.1038/ni.3632
  35. Alonzi T, Fattori E, Lazzaro D, Costa P, Probert L, Kollias G, De Benedetti F, Poli V, Ciliberto G. Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 1998;187:461-468. https://doi.org/10.1084/jem.187.4.461
  36. Madhok R, Crilly A, Watson J, Capell HA. Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity. Ann Rheum Dis 1993;52:232-234. https://doi.org/10.1136/ard.52.3.232
  37. Sack U, Kinne RW, Marx T, Heppt P, Bender S, Emmrich F. Interleukin-6 in synovial fluid is closely associated with chronic synovitis in rheumatoid arthritis. Rheumatol Int 1993;13:45-51. https://doi.org/10.1007/BF00307733
  38. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol 2009;27:485-517. https://doi.org/10.1146/annurev.immunol.021908.132710
  39. Yoshida Y, Tanaka T. Interleukin 6 and rheumatoid arthritis. BioMed Res Int 2014;2014:698313.
  40. Okamoto K, Takayanagi H. Osteoimmunology. Cold Spring Harb Perspect Med 2019;9:a031245.
  41. Shetty A, Hanson R, Korsten P, Shawagfeh M, Arami S, Volkov S, Vila O, Swedler W, Shunaigat AN, Smadi S, et al. Tocilizumab in the treatment of rheumatoid arthritis and beyond. Drug Des Devel Ther 2014;8:349-364.
  42. Nishimoto N, Yoshizaki K, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Hashimoto J, Azuma J, Kishimoto T. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 2004;50:1761-1769. https://doi.org/10.1002/art.20303
  43. McCarty D, Robinson A. Efficacy and safety of sarilumab in patients with active rheumatoid arthritis. Ther Adv Musculoskelet Dis 2018;10:61-67. https://doi.org/10.1177/1759720X17752037
  44. Mease PJ, Gottlieb AB, Berman A, Drescher E, Xing J, Wong R, Banerjee S. The efficacy and safety of clazakizumab, an anti-interleukin-6 monoclonal antibody, in a Phase IIb study of adults with active psoriatic arthritis. Arthritis Rheumatol 2016;68:2163-2173. https://doi.org/10.1002/art.39700
  45. Gabay C, Emery P, van Vollenhoven R, Dikranian A, Alten R, Pavelka K, Klearman M, Musselman D, Agarwal S, Green J, et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet 2013;381:1541-1550. https://doi.org/10.1016/S0140-6736(13)60250-0
  46. Burmester GR, Choy E, Kivitz A, Ogata A, Bao M, Nomura A, Lacey S, Pei J, Reiss W, Pethoe-Schramm A, et al. Low immunogenicity of tocilizumab in patients with rheumatoid arthritis. Ann Rheum Dis 2017;76:1078-1085. https://doi.org/10.1136/annrheumdis-2016-210297
  47. Kojima T, Yabe Y, Kaneko A, Hirano Y, Ishikawa H, Hayashi M, Miyake H, Takagi H, Kato T, Terabe K, et al. Monitoring C-reactive protein levels to predict favourable clinical outcomes from tocilizumab treatment in patients with rheumatoid arthritis. Mod Rheumatol 2013;23:977-985. https://doi.org/10.3109/s10165-012-0782-y
  48. Scott LJ. Tocilizumab: a review in rheumatoid arthritis. Drugs 2017;77:1865-1879. https://doi.org/10.1007/s40265-017-0829-7
  49. Abbas A, Lichtman A, Pillai S. Chapter 9. Activation of T lymphocytes. In: Cellular and Molecular Immunology, 9th ed. Amsterdam: Elsevier; 2016. p.209-224.
  50. Sharpe AH, Abbas AK. T-cell costimulation--biology, therapeutic potential, and challenges. N Engl J Med 2006;355:973-975. https://doi.org/10.1056/NEJMp068087
  51. Malmstrom V, Trollmo C, Klareskog L. Modulating co-stimulation: a rational strategy in the treatment of rheumatoid arthritis? Arthritis Res Ther 2005;7 Suppl 2:S15-S20. https://doi.org/10.1186/ar1505
  52. Kremer JM, Genant HK, Moreland LW, Russell AS, Emery P, Abud-Mendoza C, Szechinski J, Li T, Ge Z, Becker JC, et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann Intern Med 2006;144:865-876. https://doi.org/10.7326/0003-4819-144-12-200606200-00003
  53. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, Birbara C, Box J, Natarajan K, Nuamah I, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 2005;353:1114-1123. https://doi.org/10.1056/NEJMoa050524
  54. Schiff M, Pritchard C, Huffstutter JE, Rodriguez-Valverde V, Durez P, Zhou X, Li T, Bahrt K, Kelly S, Le Bars M, et al. The 6-month safety and efficacy of abatacept in patients with rheumatoid arthritis who underwent a washout after anti-tumour necrosis factor therapy or were directly switched to abatacept: the ARRIVE trial. Ann Rheum Dis 2009;68:1708-1714. https://doi.org/10.1136/ard.2008.099218
  55. Scarsi M, Paolini L, Ricotta D, Pedrini A, Piantoni S, Caimi L, Tincani A, Airo P. Abatacept reduces levels of switched memory B cells, autoantibodies, and immunoglobulins in patients with rheumatoid arthritis. J Rheumatol 2014;41:666-672. https://doi.org/10.3899/jrheum.130905
  56. Salmon JH, Gottenberg JE, Ravaud P, Cantagrel A, Combe B, Flipo RM, Schaeverbeke T, Houvenagel E, Gaudin P, Loeuille D, et al. Predictive risk factors of serious infections in patients with rheumatoid arthritis treated with abatacept in common practice: results from the Orencia and Rheumatoid Arthritis (ORA) registry. Ann Rheum Dis 2016;75:1108-1113. https://doi.org/10.1136/annrheumdis-2015-207362
  57. Schiff M, Keiserman M, Codding C, Songcharoen S, Berman A, Nayiager S, Saldate C, Li T, Aranda R, Becker JC, et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multicentre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis 2008;67:1096-1103. https://doi.org/10.1136/ard.2007.080002
  58. Martin Mola E, Balsa A, Martinez Taboada V, Sanmarti R, Marenco JL, Navarro Sarabia F, Gomez-Reino J, Alvaro-Gracia JM, Roman Ivorra JA, Lojo L, et al. Abatacept use in rheumatoid arthritis: evidence review and recommendations. Reumatol Clin 2013;9:5-17. https://doi.org/10.1016/j.reuma.2012.05.001
  59. Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling. Cytokine 2013;64:477-485. https://doi.org/10.1016/j.cyto.2013.07.022
  60. Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, Tocker J, Peschon J. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 2006;177:36-39. https://doi.org/10.4049/jimmunol.177.1.36
  61. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, Fujikado N, Tanahashi Y, Akitsu A, Kotaki H, et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 2009;30:108-119. https://doi.org/10.1016/j.immuni.2008.11.009
  62. Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, Miossec P. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 1999;42:963-970. https://doi.org/10.1002/1529-0131(199905)42:5<963::AID-ANR15>3.0.CO;2-E
  63. Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F, Miossec P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine 2000;12:1092-1099. https://doi.org/10.1006/cyto.2000.0681
  64. Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage RJ. Human IL-17: a novel cytokine derived from T cells. J Immunol 1995;155:5483-5486. https://doi.org/10.4049/jimmunol.155.12.5483
  65. Haugeberg G, Uhlig T, Falch JA, Halse JI, Kvien TK. Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis Rheum 2000;43:522-530. https://doi.org/10.1002/1529-0131(200003)43:3<522::AID-ANR7>3.0.CO;2-Y
  66. Koenders MI, Lubberts E, Oppers-Walgreen B, van den Bersselaar L, Helsen MM, Kolls JK, Joosten LA, van den Berg WB. Induction of cartilage damage by overexpression of T cell interleukin-17A in experimental arthritis in mice deficient in interleukin-1. Arthritis Rheum 2005;52:975-983. https://doi.org/10.1002/art.20885
  67. Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003;171:6173-6177. https://doi.org/10.4049/jimmunol.171.11.6173
  68. Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-de Roo CJ, Joosten LA, van den Berg WB. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 2004;50:650-659. https://doi.org/10.1002/art.20001
  69. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233-240. https://doi.org/10.1084/jem.20041257
  70. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, Antoni C, Draelos Z, Gold MH, et al.; Psoriasis Study Group Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med 2010;2:52ra72.
  71. Genovese MC, Van den Bosch F, Roberson SA, Bojin S, Biagini IM, Ryan P, Sloan-Lancaster J. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum 2010;62:929-939. https://doi.org/10.1002/art.27334
  72. Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, Aelion JA, Lee SH, Codding CE, Kellner H, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis 2013;72:863-869. https://doi.org/10.1136/annrheumdis-2012-201601
  73. Tlustochowicz W, Rahman P, Seriolo B, Krammer G, Porter B, Widmer A, Richards HB. Efficacy and safety of subcutaneous and intravenous loading dose regimens of secukinumab in patients with active rheumatoid arthritis: results from a randomized phase II study. J Rheumatol 2016;43:495-503. https://doi.org/10.3899/jrheum.150117
  74. Blanco FJ, Moricke R, Dokoupilova E, Codding C, Neal J, Andersson M, Rohrer S, Richards H. Secukinumab in active rheumatoid arthritis: a phase III randomized, double-blind, active comparator-and placebo-controlled study. Arthritis Rheumatol 2017;69:1144-1153. https://doi.org/10.1002/art.40070
  75. Tahir H, Deodhar A, Genovese M, Takeuchi T, Aelion J, Van den Bosch F, Haemmerle S, Richards HB. Secukinumab in active rheumatoid arthritis after anti-tnfα therapy: A randomized, double-blind placebo-controlled phase 3 study. Rheumatol Ther 2017;4:475-488. https://doi.org/10.1007/s40744-017-0086-y
  76. Benedetti G, Miossec P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur J Immunol 2014;44:339-347. https://doi.org/10.1002/eji.201344184
  77. van Baarsen LG, Lebre MC, van der Coelen D, Aarrass S, Tang MW, Ramwadhdoebe TH, Gerlag DM, Tak PP. Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for nonresponse to anti-IL-17 therapy? Arthritis Res Ther 2014;16:426.
  78. Roberts CA, Durham LE, Fleskens V, Evans HG, Taams LS. TNF blockade maintains an IL-10+ phenotype in human effector CD4+ and CD8+ T cells. Front Immunol 2017;8:157.
  79. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol 2019;15:612-632. https://doi.org/10.1038/s41584-019-0277-8
  80. Noack M, Miossec P. Selected cytokine pathways in rheumatoid arthritis. Semin Immunopathol 2017;39:365-383. https://doi.org/10.1007/s00281-017-0619-z
  81. Henderson B, Pettipher ER. Comparison of the in vivo inflammatory activities after intra-articular injection of natural and recombinant IL-1 alpha and IL-1 beta in the rabbit. Biochem Pharmacol 1988;37:4171-4176. https://doi.org/10.1016/0006-2952(88)90112-8
  82. Pettipher ER, Higgs GA, Henderson B. Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci U S A 1986;83:8749-8753. https://doi.org/10.1073/pnas.83.22.8749
  83. Ghivizzani SC, Lechman ER, Tio C, Mule KM, Chada S, McCormack JE, Evans CH, Robbins PD. Direct retrovirus-mediated gene transfer to the synovium of the rabbit knee: implications for arthritis gene therapy. Gene Ther 1997;4:977-982. https://doi.org/10.1038/sj.gt.3300486
  84. Ulfgren AK, Grondal L, Lindblad S, Khademi M, Johnell O, Klareskog L, Andersson U. Interindividual and intra-articular variation of proinflammatory cytokines in patients with rheumatoid arthritis: potential implications for treatment. Ann Rheum Dis 2000;59:439-447. https://doi.org/10.1136/ard.59.6.439
  85. Farrell SA. Reframing social justice, feminism and abortion. Conscience 2005;26:42-44.
  86. Mertens M, Singh JA. Anakinra for rheumatoid arthritis: a systematic review. J Rheumatol 2009;36:1118-1125. https://doi.org/10.3899/jrheum.090074
  87. Gram H. The long and winding road in pharmaceutical development of canakinumab from rare genetic autoinflammatory syndromes to myocardial infarction and cancer. Pharmacol Res 2020;154:104139.
  88. Genovese MC, Cohen S, Moreland L, Lium D, Robbins S, Newmark R, Bekker P; 20000223 Study Group. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum 2004;50:1412-1419. https://doi.org/10.1002/art.20221
  89. Bresnihan B, Alvaro-Gracia JM, Cobby M, Doherty M, Domljan Z, Emery P, Nuki G, Pavelka K, Rau R, Rozman B, et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum 1998;41:2196-2204. https://doi.org/10.1002/1529-0131(199812)41:12<2196::AID-ART15>3.0.CO;2-2
  90. Cohen S, Hurd E, Cush J, Schiff M, Weinblatt ME, Moreland LW, Kremer J, Bear MB, Rich WJ, McCabe D. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2002;46:614-624. https://doi.org/10.1002/art.10141
  91. Goldbach-Mansky R. Blocking interleukin-1 in rheumatic diseases. Ann N Y Acad Sci 2009;1182:111-123. https://doi.org/10.1111/j.1749-6632.2009.05159.x
  92. Hahn C, Orr AW, Sanders JM, Jhaveri KA, Schwartz MA. The subendothelial extracellular matrix modulates JNK activation by flow. Circ Res 2009;104:995-1003. https://doi.org/10.1161/CIRCRESAHA.108.186486
  93. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 2015;35:600-604. https://doi.org/10.3109/10799893.2015.1030412
  94. Korb A, Tohidast-Akrad M, Cetin E, Axmann R, Smolen J, Schett G. Differential tissue expression and activation of p38 MAPK α, β, γ, and δ isoforms in rheumatoid arthritis. Arthritis Rheum 2006;54:2745-2756. https://doi.org/10.1002/art.22080
  95. Patterson H, Nibbs R, McInnes I, Siebert S. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin Exp Immunol 2014;176:1-10. https://doi.org/10.1111/cei.12248
  96. Meier FM, McInnes IB. Small-molecule therapeutics in rheumatoid arthritis: scientific rationale, efficacy and safety. Best Pract Res Clin Rheumatol 2014;28:605-624. https://doi.org/10.1016/j.berh.2014.10.017
  97. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994;372:739-746. https://doi.org/10.1038/372739a0
  98. Shapiro L, Dinarello CA. Osmotic regulation of cytokine synthesis in vitro. Proc Natl Acad Sci U S A 1995;92:12230-12234. https://doi.org/10.1073/pnas.92.26.12230
  99. Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G, Cohen P, Fiers W. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J 1996;15:1914-1923. https://doi.org/10.1002/j.1460-2075.1996.tb00542.x
  100. Inoue T, Boyle DL, Corr M, Hammaker D, Davis RJ, Flavell RA, Firestein GS. Mitogen-activated protein kinase kinase 3 is a pivotal pathway regulating p38 activation in inflammatory arthritis. Proc Natl Acad Sci U S A 2006;103:5484-5489. https://doi.org/10.1073/pnas.0509188103
  101. Yoshizawa T, Hammaker D, Boyle DL, Corr M, Flavell R, Davis R, Schett G, Firestein GS. Role of MAPK kinase 6 in arthritis: distinct mechanism of action in inflammation and cytokine expression. J Immunol 2009;183:1360-1367. https://doi.org/10.4049/jimmunol.0900483
  102. Hegen M, Gaestel M, Nickerson-Nutter CL, Lin LL, Telliez JB. MAPKAP kinase 2-deficient mice are resistant to collagen-induced arthritis. J Immunol 2006;177:1913-1917. https://doi.org/10.4049/jimmunol.177.3.1913
  103. O'Keefe SJ, Mudgett JS, Cupo S, Parsons JN, Chartrain NA, Fitzgerald C, Chen SL, Lowitz K, Rasa C, Visco D, et al. Chemical genetics define the roles of p38α and p38β in acute and chronic inflammation. J Biol Chem 2007;282:34663-34671. https://doi.org/10.1074/jbc.M704236200
  104. Badger AM, Griswold DE, Kapadia R, Blake S, Swift BA, Hoffman SJ, Stroup GB, Webb E, Rieman DJ, Gowen M, et al. Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis. Arthritis Rheum 2000;43:175-183. https://doi.org/10.1002/1529-0131(200001)43:1<175::AID-ANR22>3.0.CO;2-S
  105. Nishikawa M, Myoui A, Tomita T, Takahi K, Nampei A, Yoshikawa H. Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653. Arthritis Rheum 2003;48:2670-2681. https://doi.org/10.1002/art.11227
  106. Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2003;2:717-726. https://doi.org/10.1038/nrd1177
  107. Cohen SB, Cheng TT, Chindalore V, Damjanov N, Burgos-Vargas R, Delora P, Zimany K, Travers H, Caulfield JP. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheum 2009;60:335-344. https://doi.org/10.1002/art.24266
  108. Alten RE, Zerbini C, Jeka S, Irazoque F, Khatib F, Emery P, Bertasso A, Rabbia M, Caulfield JP. Efficacy and safety of pamapimod in patients with active rheumatoid arthritis receiving stable methotrexate therapy. Ann Rheum Dis 2010;69:364-367. https://doi.org/10.1136/ard.2008.104802
  109. Branger J, van den Blink B, Weijer S, Madwed J, Bos CL, Gupta A, Yong CL, Polmar SH, Olszyna DP, Hack CE, et al. Anti-inflammatory effects of a p38 mitogen-activated protein kinase inhibitor during human endotoxemia. J Immunol 2002;168:4070-4077. https://doi.org/10.4049/jimmunol.168.8.4070
  110. Genovese MC, Cohen SB, Wofsy D, Weinblatt ME, Firestein GS, Brahn E, Strand V, Baker DG, Tong SE. A 24-week, randomized, double-blind, placebo-controlled, parallel group study of the efficacy of oral SCIO-469, a p38 mitogen-activated protein kinase inhibitor, in patients with active rheumatoid arthritis. J Rheumatol 2011;38:846-854. https://doi.org/10.3899/jrheum.100602
  111. Damjanov N, Kauffman RS, Spencer-Green GT. Efficacy, pharmacodynamics, and safety of VX-702, a novel p38 MAPK inhibitor, in rheumatoid arthritis: results of two randomized, double-blind, placebo-controlled clinical studies. Arthritis Rheum 2009;60:1232-1241. https://doi.org/10.1002/art.24485
  112. Genovese MC. Inhibition of p38: has the fat lady sung? Arthritis Rheum 2009;60:317-320. https://doi.org/10.1002/art.24264
  113. Kim C, Sano Y, Todorova K, Carlson BA, Arpa L, Celada A, Lawrence T, Otsu K, Brissette JL, Arthur JS, et al. The kinase p38 α serves cell type-specific inflammatory functions in skin injury and coordinates pro-and anti-inflammatory gene expression. Nat Immunol 2008;9:1019-1027. https://doi.org/10.1038/ni.1640
  114. Shaik SS, Soltau TD, Chaturvedi G, Totapally B, Hagood JS, Andrews WW, Athar M, Voitenok NN, Killingsworth CR, Patel RP, et al. Low intensity shear stress increases endothelial ELR+ CXC chemokine production via a focal adhesion kinase-p38β MAPK-NF-κB pathway. J Biol Chem 2009;284:5945-5955. https://doi.org/10.1074/jbc.M807205200
  115. Hammaker D, Firestein GS. "Go upstream, young man": lessons learned from the p38 saga. Ann Rheum Dis 2010;69 Suppl 1:i77-i82. https://doi.org/10.1136/ard.2009.119479
  116. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001;412:346-351. https://doi.org/10.1038/35085597
  117. Fragoulis GE, McInnes IB, Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology (Oxford) 2019;58 Suppl 1:i43-i54. https://doi.org/10.1093/rheumatology/key276
  118. Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 2017;15:23.
  119. Harrington R, Al Nokhatha SA, Conway R. JAK inhibitors in rheumatoid arthritis: An evidence-based review on the emerging clinical data. J Inflamm Res 2020;13:519-531. https://doi.org/10.2147/JIR.S219586
  120. O'Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med 2013;368:161-170. https://doi.org/10.1056/NEJMra1202117
  121. Lee EB, Fleischmann R, Hall S, Wilkinson B, Bradley JD, Gruben D, Koncz T, Krishnaswami S, Wallenstein GV, Zang C, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med 2014;370:2377-2386. https://doi.org/10.1056/NEJMoa1310476
  122. Fleischmann R, Mysler E, Hall S, Kivitz AJ, Moots RJ, Luo Z, DeMasi R, Soma K, Zhang R, Takiya L, et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet 2017;390:457-468. https://doi.org/10.1016/S0140-6736(17)31618-5
  123. Fleischmann R, Schiff M, van der Heijde D, Ramos-Remus C, Spindler A, Stanislav M, Zerbini CA, Gurbuz S, Dickson C, de Bono S, et al. Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Rheumatol 2017;69:506-517. https://doi.org/10.1002/art.39953
  124. Taylor PC, Keystone EC, van der Heijde D, Weinblatt ME, Del Carmen Morales L, Reyes Gonzaga J, Yakushin S, Ishii T, Emoto K, Beattie S, et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med 2017;376:652-662. https://doi.org/10.1056/NEJMoa1608345
  125. Parmentier JM, Voss J, Graff C, Schwartz A, Argiriadi M, Friedman M, Camp HS, Padley RJ, George JS, Hyland D, et al. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol 2018;2:23.
  126. Conaghan PG, Mysler E, Tanaka Y, Da Silva-Tillmann B, Shaw T, Liu J, Ferguson R, Enejosa JV, Cohen S, Nash P, et al. Upadacitinib in rheumatoid arthritis: A benefit-risk assessment across a Phase III program. Drug Saf 2021;44:515-530. https://doi.org/10.1007/s40264-020-01036-w
  127. Burja B, Mertelj T, Frank-Bertoncelj M. Hi-JAKi-ng synovial fibroblasts in inflammatory arthritis with JAK inhibitors. Front Med (Lausanne) 2020;7:124.