DOI QR코드

DOI QR Code

장시간 시효 열처리된 오스테나이트계 304강의 미세조직과 부식 특성

Microstructure and Corrosion Characteristics of Austenitic 304 Stainless Steel Subjected to Long-term Aging Heat Treatment

  • 허채을 (조선대학교 첨단소재공학과) ;
  • 김정석 (조선대학교 신소재공학과)
  • Huh, ChaeEul (Department of Advanced materials and Engineering, Chosun UNIV.) ;
  • Kim, ChungSeok (Department of Materials Science and Engineering, Chosun UNIV.)
  • 투고 : 2021.11.10
  • 심사 : 2021.11.24
  • 발행 : 2022.01.31

초록

The electrochemical corrosion properties of austenitic AISI 304 steel subjected to a long-term-aging heat treatment were investigated. AISI 304 steel was aged at 700 ℃ for up to 10,000 h. The variation in the microstructure of the aged specimens was observed by optical microscopy and scanning electron microscopy. Electrochemical polarization experiments were performed to obtain the corrosion current density (Icorr) and corrosion potential (Ecorr). Analyses indicated that the metastable intermetallic carbide M23C6 formed near the γ/γ grain boundary and coarsened with increasing aging time; meanwhile, the δ-ferrite decomposed into the σ phase and into M23C6 carbide. As the aging time increased, the current density increased, but the corrosion potential of the austenitic specimen remained high (at least 0.04 ㎛/cm2). Because intergranular carbide was absent, the austenitic annealed specimen exhibited the highest pitting resistance. Consequently, the corrosion resistance of austenitic AISI 304 steel decreased as the aging heat treatment time increased.

키워드

과제정보

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No. 2020R1I1A3A0403690312)

참고문헌

  1. Stoter, L. P., "Thermal ageing effects in AISI type 316 stainless steel," Journal of Materials Science, Vol. 16 No. 4, pp. 1039-1051, 1981. https://doi.org/10.1007/BF00542750
  2. Goyal, S., Sandhya. R., Valsan. M., Bhanusankararao. K., "The effect of thermal ageing on low cycle fatigue behaviour of 316 stainless steel welds," Internal Journal of Fatigue, Vol. 31 No. 3, pp. 447-454, 2009. https://doi.org/10.1016/j.ijfatigue.2008.07.006
  3. Jayakumar, T., Mathew, M. D., Laha, K., "High Temperature Materials for Nuclear Fast Fission and Fusion Reactors and Advanced Fossil Power Plants," Procedia Engineering, Vol. 55 No. 8, pp. 259-270, 2013. https://doi.org/10.1016/j.proeng.2013.03.252
  4. Takeuchi, T., Kakubo, Y., Matsukawa, Y., Nozawa, Y., Toyama, T., Nagai, Y., Nishiyama, Y., Katsuyama, J., Yamaguchi. Y., Onizawa. K., "Effects of thermal aging on microstructure and hardness of stainless steel weld-overlay claddings of nuclear reactor pressure vessels," J. Nucl. Mater., Vol. 452 No. 1-3, pp. 235-240, 2014. https://doi.org/10.1016/j.jnucmat.2014.04.003
  5. Vach, M., Kunikova, T., Domankova, M., Sevc, P., Caplovic, L., Gogola, P., Janovec, J., "Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800 C," Mater. Charact., Vol. 59 No. 12, pp. 1792-1798, 2008. https://doi.org/10.1016/j.matchar.2008.04.009
  6. Tekin, A., Martin, J. W., Senior, B. A., "Grain boundary sensitization and desensitization during the ageing of 316L(N) austenitic stainless steels," Journal of Materials Science, Vol. 26 No. 9, pp. 2458-2466, 1991. https://doi.org/10.1007/BF01130196
  7. Rhouma, A. B., Amadou, T., Sidhome, H., Braham. C., "Correlation between microstructure and intergranular corrosion behavior of low delta-ferrite content AISI 316L aged in the range 550-700 C," Journal of Alloys Compounds, Vol. 708, pp. 871-886, 2017. https://doi.org/10.1016/j.jallcom.2017.02.273
  8. Dippenaar, R. J., Phelan, D. J., "Delta-ferrite recovery structures in low-carbon steels. Metall," Mater. Trans. B, Vol. 34 No. 5, pp. 495-501, 2003. https://doi.org/10.1007/s11663-003-0016-y
  9. Gigovic-Gekic, A., Oruc, M., Muhamedagic. S., "Effect of the delta-ferrite content on the tensile properties in Nitronic 60 steel at room temperature and 750 C," Materials Technology, Vol. 46 No. 5, pp. 519-523, 2012.
  10. Lo, K. H., Zeng, D., Kwok, C. T., "Effects of sensitisation-induced martensitic transformation on the tensile behaviour of 304 austenitic stainless steel," Mater. Sci. Eng. A, Vol. 523 No. 3, pp. 1003-1007, 2011.
  11. Park, S. H. C., Sato, Y. S., Kokawa, H., Okamoto, K., Hirano, S., Inagaki, M., "Corrosion resistance of friction stir welded 304 stainless steel," Scr. Mater., Vol. 51 No. 2, pp. 101-105, 2004. https://doi.org/10.1016/j.scriptamat.2004.04.001
  12. Song, R., Xiang, J., Hou, D., "Characteristics of Mechanical Properties and Microstructure for 316L Austenitic Stainless Steel," J. Iron Steel Res. Int., Vol. 18 No. 11, pp. 53-59, 2011. https://doi.org/10.1016/S1006-706X(11)60117-9
  13. Takaya, S., Suzuki, T., Matsumoto. Y., Demachi. K., Uesaka. M., "Estimation of stress corrosion cracking sensitivity of type 304 stainless steel by magnetic force microscope," J. Nucl. Mater., Vol. 327 No. 1, pp. 19-26, 2004. https://doi.org/10.1016/j.jnucmat.2004.01.016
  14. Zhang, X. G., "Corrosion Potential and Corrosion Current In Corrosion and Electrochemistry of Zinc," Springer: Boston, pp. 125-156, 1996.
  15. Zhang, G. A., Cheng, Y. F., "Micro-electrochemical characterization and Mott-Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution," Electrochim. Acta, Vol. 55 No. 1, pp. 316-324, 2009. https://doi.org/10.1016/j.electacta.2009.09.001
  16. Li, B., Huan, Y., Zhang, W., "Passivation and Corrosion Behavior of P355 Carbon Steel in Simulated Concrete Pore Solution at pH 12.5 to 14," Int. J. Electrochem. Sci., Vol. 12 No. 11, pp. 10402-10420, 2017. https://doi.org/10.20964/2017.11.51
  17. Warren, A. D., Griths, I. J., Flewitt, P. E. J., "Precipitation within localised chromium-enriched regions in a Type 316H austenitic stainless steel," J. Mater. Sci., Vol. 53 No. 8, pp. 6183-6197, 2018. https://doi.org/10.1007/s10853-017-1748-4