DOI QR코드

DOI QR Code

Comprehensive Transcriptomic Analysis of Cordyceps militaris Cultivated on Germinated Soybeans

  • Yoo, Chang-Hyuk (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Sadat, Md. Abu (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Kim, Wonjae (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Park, Tae-Sik (Department of Life Science, Gacheon University) ;
  • Park, Dong Ki (Cell Activation Research Institute) ;
  • Choi, Jaehyuk (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
  • Received : 2021.10.27
  • Accepted : 2022.01.24
  • Published : 2022.02.28

Abstract

The ascomycete fungus Cordyceps militaris infects lepidopteran larvae and pupae and forms characteristic fruiting bodies. Owing to its immune-enhancing effects, the fungus has been used as a medicine. For industrial application, this fungus can be grown on geminated soybeans as an alternative protein source. In our study, we performed a comprehensive transcriptomic analysis to identify core gene sets during C. militaris cultivation on germinated soybeans. RNA-Seq technology was applied to the fungal cultures at seven-time points (2, 4, and 7-day and 2, 3, 5, 7-week old cultures) to investigate the global transcriptomic change. We conducted a time-series analysis using a two-step regression strategy and chose 1460 significant genes and assigned them into five clusters. Characterization of each cluster based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases revealed that transcription profiles changed after two weeks of incubation. Gene mapping of cordycepin biosynthesis and isoflavone modification pathways also confirmed that gene expression in the early stage of GSC cultivation is important for these metabolic pathways. Our transcriptomic analysis and selected genes provided a comprehensive molecular basis for the cultivation of C. militaris on germinated soybeans.

Keywords

Acknowledgement

This work was supported by the Post-Doctoral Research Program in the Incheon National University.

References

  1. Sung G-H, Hywel-Jones NL, Sung J-M, et al. Phylogenetic classification of Cordyceps and the Clavicipitaceous fungi. Stud Mycol. 2007;57:5-59. https://doi.org/10.3114/sim.2007.57.01
  2. Paterson RRM. Cordyceps - a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry. 2008;69(7):1469-1495. https://doi.org/10.1016/j.phytochem.2008.01.027
  3. Qin P, Li X, Yang H, et al. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules. 2019;24(12):2231. https://doi.org/10.3390/molecules24122231
  4. JeRdrejko KJ, Lazur J, Muszynska B. Cordyceps militaris: an overview of its chemical constituents in relation to biological activity. Foods. 2021;10(11):2634. https://doi.org/10.3390/foods10112634
  5. Zhong J-J, Xiao J-H. Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. In: Zhong J-J, Bai F-W, Zhang W, editors. Biotechnology in China I. Switzerland: Springer; 2009. p. 79-150.
  6. Noh E-M, Jung SH, Han J-H, et al. Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressing the MAPK/AP-1 pathway in MCF-7 human breast cancer cells. Int J Mol Med. 2010;25:255-260.
  7. Kim HG, Shrestha B, Lim SY, et al. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-κB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol. 2006;545(2-3):192-199. https://doi.org/10.1016/j.ejphar.2006.06.047
  8. Choi E, Oh J, Sung G-H. Antithrombotic and antiplatelet effects of Cordyceps militaris. Mycobiology. 2020;48(3):228-232. https://doi.org/10.1080/12298093.2020.1763115
  9. Shao LW, Huang LH, Yan S, et al. Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways. Oncol Lett. 2016;12(2):995-1000. https://doi.org/10.3892/ol.2016.4706
  10. Nasser MI, Masood M, Wei W, et al. Cordycepin induces apoptosis in SGC-7901 cells through mitochondrial extrinsic phosphorylation of PI3K/akt by generating ROS. Int J Oncol. 2017;50(3):911-919. https://doi.org/10.3892/ijo.2017.3862
  11. Tian X, Li Y, Shen Y, et al. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncol Lett. 2015;10(2):595-599. https://doi.org/10.3892/ol.2015.3273
  12. Zheng P, Xia Y, Xiao G, et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 2011;12(11):R116. https://doi.org/10.1186/gb-2011-12-11-r116
  13. Vongsangnak W, Raethong N, Mujchariyakul W, et al. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi. Gene. 2017;626:132-139. https://doi.org/10.1016/j.gene.2017.05.027
  14. Xia Y, Luo F, Shang Y, et al. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol. 2017;24(12):1479-1489. https://doi.org/10.1016/j.chembiol.2017.09.001
  15. Yin Y, Yu G, Chen Y, et al. Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLOS One. 2012;7(12):e51853. https://doi.org/10.1371/journal.pone.0051853
  16. Yin J, Xin XD, Weng YJ, et al. Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLOS One. 2017;12(10):e0186279. https://doi.org/10.1371/journal.pone.0186279
  17. Raethong N, Laoteng K, Vongsangnak W. Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis. Sci Rep. 2018;8(1):1-13.
  18. Chen B-X, Wei T, Xue L-N, et al. Transcriptome analysis reveals the flexibility of cordycepin network in Cordyceps militaris activated by l-alanine addition. Front Microbiol . 2020;11:577. https://doi.org/10.3389/fmicb.2020.00577
  19. Xia F, Liu Y, Shen G-R, et al. Investigation and analysis of microbiological communities in natural Ophiocordyceps sinensis. Can J Microbiol. 2015;61(2):104-111. https://doi.org/10.1139/cjm-2014-0610
  20. Liu Z-Q, Lin S, Baker PJ, et al. Transcriptome sequencing and analysis of the entomopathogenic fungus Hirsutella sinensis isolated from Ophiocordyceps sinensis. BMC Genomics. 2015;16:106. https://doi.org/10.1186/s12864-015-1269-y
  21. Lin S, Liu Z-Q, Xue Y-P, et al. Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis. Appl Biochem Biotechnol. 2016;179(4):633-649. https://doi.org/10.1007/s12010-016-2020-0
  22. Ohta Y, Lee J-B, Hayashi K, et al. In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J Agric Food Chem. 2007;55(25):10194-10199. https://doi.org/10.1021/jf0721287
  23. Choi JN, Kim J, Lee MY, et al. Metabolomics revealed novel isoflavones and optimal cultivation time of Cordyceps militaris fermentation. J Agric Food Chem. 2010;58(7):4258-4267. https://doi.org/10.1021/jf903822e
  24. Oh JY, Choi W-S, Lee CH, et al. The ethyl acetate extract of Cordyceps militaris inhibits IgE-mediated allergic responses in mast cells and passive cutaneous anaphylaxis reaction in mice. J Ethnopharmacol. 2011;135(2):422-429. https://doi.org/10.1016/j.jep.2011.03.030
  25. Park DK, Park H-J. Ethanol extract of Cordyceps militaris grown on germinated soybeans attenuates dextran-sodium-sulfate-(DSS-) induced colitis by suppressing the expression of matrix metalloproteinases and inflammatory mediators. Biomed Res Int. 2013;2013:10928.
  26. Assefa AT, Vandesompele J, Thas O. On the utility of RNA sample pooling to optimize cost and statistical power in RNA sequencing experiments. BMC Genomics. 2020;21(1):312. https://doi.org/10.1186/s12864-020-6721-y
  27. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357-360. https://doi.org/10.1038/nmeth.3317
  28. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841-842. https://doi.org/10.1093/bioinformatics/btq033
  29. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80. https://doi.org/10.1186/gb-2004-5-10-r80
  30. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8
  31. Nueda MJ, Tarazona S, Conesa A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics. 2014;30(18):2598-2602. https://doi.org/10.1093/bioinformatics/btu333
  32. Suparmin A, Kato T, Dohra H, et al. Insight into cordycepin biosynthesis of Cordyceps militaris: comparison between a liquid surface culture and a submerged culture through transcriptomic analysis. PLOS One. 2017;12(11):e0187052. https://doi.org/10.1371/journal.pone.0187052
  33. Ko KP. Isoflavones: Chemistry, analysis, functions and effects on health and cancer. Asian Pac J Cancer Prev. 2014;15(17):7001-7010. https://doi.org/10.7314/APJCP.2014.15.17.7001
  34. Choi EJ, Kim GH. The antioxidant activity of daidzein metabolites, O-desmethylangolensin and equol, in HepG2 cells. Mol Med Rep. 2014;9(1):328-332. https://doi.org/10.3892/mmr.2013.1752
  35. Ververidis F, Trantas E, Douglas C, et al. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol J. 2007;2(10):1214-1234. https://doi.org/10.1002/biot.200700084
  36. Lee J, Doo EH, Kwon DY, et al. Functionalization of isoflavones with enzymes. Food Sci Biotechnol. 2008;17:228-233.
  37. Guadamuro L, Florez AB, Alegria A, et al. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007. Food Res Int. 2017;100(Pt 1):522-528. https://doi.org/10.1016/j.foodres.2017.07.024
  38. Kim DH, Kim BG, Lee Y, et al. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J Biotechnol. 2005;119(2):155-162. https://doi.org/10.1016/j.jbiotec.2005.04.004