Acknowledgement
This work was supported by the Post-Doctoral Research Program in the Incheon National University.
References
- Sung G-H, Hywel-Jones NL, Sung J-M, et al. Phylogenetic classification of Cordyceps and the Clavicipitaceous fungi. Stud Mycol. 2007;57:5-59. https://doi.org/10.3114/sim.2007.57.01
- Paterson RRM. Cordyceps - a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry. 2008;69(7):1469-1495. https://doi.org/10.1016/j.phytochem.2008.01.027
- Qin P, Li X, Yang H, et al. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules. 2019;24(12):2231. https://doi.org/10.3390/molecules24122231
- JeRdrejko KJ, Lazur J, Muszynska B. Cordyceps militaris: an overview of its chemical constituents in relation to biological activity. Foods. 2021;10(11):2634. https://doi.org/10.3390/foods10112634
- Zhong J-J, Xiao J-H. Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. In: Zhong J-J, Bai F-W, Zhang W, editors. Biotechnology in China I. Switzerland: Springer; 2009. p. 79-150.
- Noh E-M, Jung SH, Han J-H, et al. Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressing the MAPK/AP-1 pathway in MCF-7 human breast cancer cells. Int J Mol Med. 2010;25:255-260.
- Kim HG, Shrestha B, Lim SY, et al. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-κB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol. 2006;545(2-3):192-199. https://doi.org/10.1016/j.ejphar.2006.06.047
- Choi E, Oh J, Sung G-H. Antithrombotic and antiplatelet effects of Cordyceps militaris. Mycobiology. 2020;48(3):228-232. https://doi.org/10.1080/12298093.2020.1763115
- Shao LW, Huang LH, Yan S, et al. Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways. Oncol Lett. 2016;12(2):995-1000. https://doi.org/10.3892/ol.2016.4706
- Nasser MI, Masood M, Wei W, et al. Cordycepin induces apoptosis in SGC-7901 cells through mitochondrial extrinsic phosphorylation of PI3K/akt by generating ROS. Int J Oncol. 2017;50(3):911-919. https://doi.org/10.3892/ijo.2017.3862
- Tian X, Li Y, Shen Y, et al. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncol Lett. 2015;10(2):595-599. https://doi.org/10.3892/ol.2015.3273
- Zheng P, Xia Y, Xiao G, et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 2011;12(11):R116. https://doi.org/10.1186/gb-2011-12-11-r116
- Vongsangnak W, Raethong N, Mujchariyakul W, et al. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi. Gene. 2017;626:132-139. https://doi.org/10.1016/j.gene.2017.05.027
- Xia Y, Luo F, Shang Y, et al. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol. 2017;24(12):1479-1489. https://doi.org/10.1016/j.chembiol.2017.09.001
- Yin Y, Yu G, Chen Y, et al. Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLOS One. 2012;7(12):e51853. https://doi.org/10.1371/journal.pone.0051853
- Yin J, Xin XD, Weng YJ, et al. Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLOS One. 2017;12(10):e0186279. https://doi.org/10.1371/journal.pone.0186279
- Raethong N, Laoteng K, Vongsangnak W. Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis. Sci Rep. 2018;8(1):1-13.
- Chen B-X, Wei T, Xue L-N, et al. Transcriptome analysis reveals the flexibility of cordycepin network in Cordyceps militaris activated by l-alanine addition. Front Microbiol . 2020;11:577. https://doi.org/10.3389/fmicb.2020.00577
- Xia F, Liu Y, Shen G-R, et al. Investigation and analysis of microbiological communities in natural Ophiocordyceps sinensis. Can J Microbiol. 2015;61(2):104-111. https://doi.org/10.1139/cjm-2014-0610
- Liu Z-Q, Lin S, Baker PJ, et al. Transcriptome sequencing and analysis of the entomopathogenic fungus Hirsutella sinensis isolated from Ophiocordyceps sinensis. BMC Genomics. 2015;16:106. https://doi.org/10.1186/s12864-015-1269-y
- Lin S, Liu Z-Q, Xue Y-P, et al. Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis. Appl Biochem Biotechnol. 2016;179(4):633-649. https://doi.org/10.1007/s12010-016-2020-0
- Ohta Y, Lee J-B, Hayashi K, et al. In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J Agric Food Chem. 2007;55(25):10194-10199. https://doi.org/10.1021/jf0721287
- Choi JN, Kim J, Lee MY, et al. Metabolomics revealed novel isoflavones and optimal cultivation time of Cordyceps militaris fermentation. J Agric Food Chem. 2010;58(7):4258-4267. https://doi.org/10.1021/jf903822e
- Oh JY, Choi W-S, Lee CH, et al. The ethyl acetate extract of Cordyceps militaris inhibits IgE-mediated allergic responses in mast cells and passive cutaneous anaphylaxis reaction in mice. J Ethnopharmacol. 2011;135(2):422-429. https://doi.org/10.1016/j.jep.2011.03.030
- Park DK, Park H-J. Ethanol extract of Cordyceps militaris grown on germinated soybeans attenuates dextran-sodium-sulfate-(DSS-) induced colitis by suppressing the expression of matrix metalloproteinases and inflammatory mediators. Biomed Res Int. 2013;2013:10928.
- Assefa AT, Vandesompele J, Thas O. On the utility of RNA sample pooling to optimize cost and statistical power in RNA sequencing experiments. BMC Genomics. 2020;21(1):312. https://doi.org/10.1186/s12864-020-6721-y
- Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357-360. https://doi.org/10.1038/nmeth.3317
- Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841-842. https://doi.org/10.1093/bioinformatics/btq033
- Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80. https://doi.org/10.1186/gb-2004-5-10-r80
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8
- Nueda MJ, Tarazona S, Conesa A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics. 2014;30(18):2598-2602. https://doi.org/10.1093/bioinformatics/btu333
- Suparmin A, Kato T, Dohra H, et al. Insight into cordycepin biosynthesis of Cordyceps militaris: comparison between a liquid surface culture and a submerged culture through transcriptomic analysis. PLOS One. 2017;12(11):e0187052. https://doi.org/10.1371/journal.pone.0187052
- Ko KP. Isoflavones: Chemistry, analysis, functions and effects on health and cancer. Asian Pac J Cancer Prev. 2014;15(17):7001-7010. https://doi.org/10.7314/APJCP.2014.15.17.7001
- Choi EJ, Kim GH. The antioxidant activity of daidzein metabolites, O-desmethylangolensin and equol, in HepG2 cells. Mol Med Rep. 2014;9(1):328-332. https://doi.org/10.3892/mmr.2013.1752
- Ververidis F, Trantas E, Douglas C, et al. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol J. 2007;2(10):1214-1234. https://doi.org/10.1002/biot.200700084
- Lee J, Doo EH, Kwon DY, et al. Functionalization of isoflavones with enzymes. Food Sci Biotechnol. 2008;17:228-233.
- Guadamuro L, Florez AB, Alegria A, et al. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007. Food Res Int. 2017;100(Pt 1):522-528. https://doi.org/10.1016/j.foodres.2017.07.024
- Kim DH, Kim BG, Lee Y, et al. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J Biotechnol. 2005;119(2):155-162. https://doi.org/10.1016/j.jbiotec.2005.04.004