DOI QR코드

DOI QR Code

한국형 인공월면토(KLS-1) 마이크로파 소결을 위한 전기장-열 연계해석 모델 평가

Assessment of the Coupled Electric-Thermal Numerical Model for Microwave Sintering of KLS-1

  • 진현우 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 고규현 (금오공과대학교 토목공학과) ;
  • 이장근 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 신휴성 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 김영재 (한국건설기술연구원 미래스마트건설연구본부)
  • Jin, Hyunwoo (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Go, Gyu-Hyun (Dept. of Civil Engineering, Kumoh National Institute of Tech) ;
  • Lee, Jangguen (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Shin, Hyu-Soung (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Kim, Young-Jae (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology)
  • 투고 : 2022.04.18
  • 심사 : 2022.04.28
  • 발행 : 2022.05.31

초록

최근 지속가능한 달 표면 탐사 및 심우주 탐사를 위해 현지자원활용 개념이 주목받으며 월면토를 이용한 건설재료 생산 기술 개발 관련 연구들이 진행되고 있다. 특히, 마이크로파 소결 기술은 에너지 효율 측면에서 유리할 뿐 아니라 별도의 바인더를 필요로 하지 않는다는 장점이 있다. 본 연구에서는 한국형 인공월면토인 KLS-1에 마이크로파 소결 기술을 적용해 보았다. 향후 실제 건설재료로 활용 가능한 크기의 소결체 제작을 위해서는 균질도 확보가 매우 중요한 실정으로 마이크로파, 공동, 재료 간 상호작용에 관한 이해가 요구된다. 따라서 수많은 경우의 수에 관한 효율적 평가 및 장비가동 조건 정립 측면에서 수치모델의 활용은 매우 효율적인 방법이다. 본 연구에서는 전기장-열 연계 해석모델을 제안하고 있으며 교차검증 및 실험결과와의 비교 등을 통해 수치모델의 신뢰성을 검증하였다. 이는 향후 마이크로파 소결 기술을 적용한 건설재료 생산 시 효율적인 방법을 제시하는데 활용 가능할 것으로 판단된다.

The in-situ resource utilization (ISRU) for sustainable lunar surface and deep space explorations has recently gained attention. Also, research on the development of construction material preparation technology using lunar regolith is in progress. Microwave sintering technology for construction material preparation does not require a binder and is energy efficient. This study applies microwave sintering technology to KLS-1, a Korean lunar simulant. It is crucial to secure the homogeneity to produce a sintered specimen for construction material. Therefore, understanding the interactions between microwaves, cavities, and raw materials is required. Using a numerical model in terms of efficient assessment of several cases and establishment of equipment operating conditions is a very efficient approach. Therefore, this study also proposes and verifies a coupled electric-thermal numerical model through cross-validation and comparison with experimental results. The numerical model proposed in this study will be used to present an efficient method for producing construction material using microwave sintering technology.

키워드

과제정보

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220124-001, 극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발).

참고문헌

  1. Agrawal, D. (2006), "Microwave Sintering of Ceramics Composites and Metallic Materials and Melting of Glasses", Trans. Indian Ceram. Soc., Vol.65, No.3, pp.129-144. https://doi.org/10.1080/0371750X.2006.11012292
  2. Ahn, S.H. and Lee, W.S. (2020), "Uniform Microwave Heating System Design and Evaluation with an Orthogonally Slot-loaded Array Waveguide", Microw. Opt. Technol. Lett., Vol.62, pp.3419- 3424. https://doi.org/10.1002/mop.32467
  3. Ahn, S.H., Jeong, C.H., Lim, D.M., and Lee, W.S. (2020), "Kilowattlevel Power-controlled Microwave Applicator with Multiple Slotted Waveguides for Improving Heating Uniformity", IEEE Trans. Microw. Theory Tech., Vol.68, No.7, pp.2867-2875. https://doi.org/10.1109/tmtt.2020.2977645
  4. ASTM International (2019), "Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass", ASTM International, West Conshohocken, PA, USA.
  5. Bae, S.H., Jeong, M.G., Kim, J.H., and Lee, W.S. (2017), "A Continuous Power-controlled Microwave Belt Drier Improving Heating Uniformity", IEEE Microw. Wirel. Compon. Lett., Vol.27, No.5, pp.527-529. https://doi.org/10.1109/LMWC.2017.2690849
  6. Balla, V.K., Roberson, L.B., O'Connor, G.W., Trigwell, S., Bose, S., and Bandyopadhyay, A. (2012), "First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts", Rapid Prototyping J., Vol.18, No.6, pp.451-457. https://doi.org/10.1108/13552541211271992
  7. Bansal, A. and Sharma, A.K. (2014), "3D Electromagnetic Field Simulation of Silicon Carbide and Grap hite Plate in Microwave Oven", Int. J. Mech. Eng. Rob. Res., Specieal Issue, Vol.1, No.1, pp.7-12. https://doi.org/10.14445/23488360/IJME-V1I2P102
  8. Brent, S. (2019), "Principles for a Practical Moon base", Acta Astronaut., Vol.160, pp.116-124. https://doi.org/10.1016/j.actaastro.2019.04.018
  9. Christian, S., Lukas, W., and Thomas, R. (2018), "Sustainable Challenges on the Moon", Curr. Opin. Green Sust., Vol.9, pp. 8-12. https://doi.org/10.1016/j.cogsc.2017.10.002
  10. Colozza, A.J (1991), "Analysis of Lunar Regolith Thermal Energy Storage", Lewis Research Center Group in Sverdrup Technology, Inc., NASA Contractor Report 189073, Cleveland, Ohio, USA.
  11. Comsol Inc, Comsol Multiphysics User's Manual Ver. 5.5, 2020. USA.
  12. Cremers, C.J. (2012), "Thermophysical Properties of Apollo 14 Fines", J. Geophys. Res., Vol.80, No.32, pp.4466-4470. https://doi.org/10.1029/JB080i032p04466
  13. Fateri, M. and Gebhardt, A. (2015), "Process Parameters Development of Selective Laser Melting of Lunar Regolith for On-site Manufacturing Applications", Int. J. Appl. Ceram. Tec., Vol.12, No.1, pp.46-52. https://doi.org/10.1111/ijac.12326
  14. Gao, X., Liu, X., Yan, P., Li, X., and Li, H. (2019), "Numerical Analysis and Optimization of the Microwave Inductive Heating Performance of Water Film", Int. j. heat mass transf., Vol.139, pp.17-30. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.122
  15. Goulas, A., Binner, J.G.P., Harris, R.A., and Friel, R.J. (2017), "Assessing Extraterrestrial Regolith Material Simulants for In-situ Resource Utilisation based 3D Printing", Appl. Mater. Today, Vol.6, pp.54-61. https://doi.org/10.1016/j.apmt.2016.11.004
  16. Halim, S.A. (2016), "Biomass pyrolysis using microwave technology", Univ. Sheffield, PhD thesis, Sheffield, UK.
  17. Halim, S.A. and Swithenbank, J. (2019), "Simulation Study of Parameters Influencing Microwave Heating of Biomass", J. Energy Inst., Vol.92, pp.1191-1212. https://doi.org/10.1016/j.joei.2018.05.010
  18. Hintze, P.E., Curran, J., and Back, T. (2009), "Lunar Surface Stabilization via Sintering or the Use of Heat Cured Polymers", 47th AIAA Aerospace Science Meeting including The New Horizons Forum and Aerospace Exposition.
  19. Jeong, C.H., Ahn, S.H., and Lee, W.S. (2019), "Four-kilowatt Homogeneous Microwave Heating System Using a Power-controlled Phase-shifting Mode for Improved Heating Uniformity", Electron. Lett., Vol.55, No.8, pp.465-467. https://doi.org/10.1049/el.2019.0060
  20. Jin, H., Kim, Y., Ryu, B.H., and Lee, J. (2020), "Experimental Assessment of Manufacturing System Efficiency and Hydrogen Reduction Reaction for Fe(0) Simulation for KLS-1", J. Korean Geotech. Soc., Vol.36, No.8, pp.17-25. https://doi.org/10.7843/KGS.2020.36.8.17
  21. Jin, H., Lee, J., Ryu, B.H., Shin, H.S., and Kim, Y.J. (2021), "The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering", J. Korean Geotech. Soc., Vol.37, No.2, pp.5-17. https://doi.org/10.7843/KGS.2021.37.2.5
  22. Kang, Y. and Morita, K. (2006), "Thermal Conductivity of the CaO-Al2O3-SiO2 system", ISIJ Int., Vol.46, No.3, pp.420-426. https://doi.org/10.2355/isijinternational.46.420
  23. Kim, Y.J., Ryu, B.H., Jin, H., Lee, J., and Shin, H.S. (2021), "Microstructural, Mechanical, and Thermal Properties of Microwave-sintered KLS-1 Lunar Regolith Simulant", Ceram. Int., Vol.47, pp.26891-26897. https://doi.org/10.1016/j.ceramint.2021.06.098
  24. Langseth, M.G., Clark, S.P., Chute, J.L., Keihm, S.J., and Wechsler, A.E. (1972), "The Apollo 15 Lunar heat-flow measurement", The Moon, Vol.4, No.3, pp.390-410. https://doi.org/10.1007/BF00562006
  25. Li, S., Lucey, P.G., Milliken, R.E., Hayne, P.O., Fisher, E., Williams, J.P., Hurley, D.M., and Elphic, R.C. (2018), "Direct Evidence of Surface Exposed Water Ice in the Lunar Polar Regions", Proc. Nat. Acad. Sci., USA.
  26. Lim, S., Anand, M., and Rouse, T. (2015), "Estimation of Energy and Material Use of Sintering-based Construction for a Lunar Outpost - with the Example of SinterHab Module Design", 46th Lunar. Planet. Sci. Conf., UK, No. 1076.
  27. Lim, S., Prabhu, V.L., Anand, M., and Taylor, L.A. (2017), "Extraterrestrial Construction Processes - Advancements, Opportunities and Challenges", Adv. Space Res., Vol.60, No.7, pp.1413-1429. https://doi.org/10.1016/j.asr.2017.06.038
  28. Lim, S. and Anand, M. (2019), "Numerical Modelling of the Microwave Heating behaviour of Lunar Regolith", Planet Space Sci., Vol.179, No.104723. https://doi.org/10.1016/j.pss.2019.104723
  29. Lin, T.D., Skaar, S.B., and O'Gallagher, J.J. (1997), "Proposed Remote-control, Solar-powered Concrete Production Experiment on the Moon", J. Aerospace Eng., Vol.10, No.2, pp.104.109. https://doi.org/10.1061/(ASCE)0893-1321(1997)10:2(104)
  30. Meurisse, A., Cowley, A., Cristoforetti, S., Makaya, A., Pambaguian, L., and Sperl, M. (2018), "Solar 3D Printing of Lunar Regolith", Acta Astronaut., Vol.152, pp.800-810. https://doi.org/10.1016/j.actaastro.2018.06.063
  31. Nozette, S., Lichtenberg, C.L., Spudis, P., Bonner, R., Ort, W., Malaret, E., Robinson, M., and Shoemaker, E.M. (1996), "The Clementine Bistatic Radar Experiment", Sci., Vol.274, No.5292, pp.1495-1498. https://doi.org/10.1126/science.274.5292.1495
  32. Nozette, S., Spudis, P.D., Robinson, M.S., Bussey, D.B.J., Lichtenberg, C., and Bonner, R. (2001), "Integration of Lunar Polar Remotesensing Data Sets: Evidence for Ice at the Lunar South Pole", J. Geophys. Res.-Planet, Vol.106, No.E10, pp.23253-23266. https://doi.org/10.1029/2000JE001417
  33. Pert, E., Carmel, Y., Birnboim, A., Olorunyolemi, T., Gershon, D., Calame, J., Lloyd, I.K., and Wilson Jr., O.C. (2001), "Temperature Measurements during Microwave Processing: The Significance of Thermocouple Effects", J. Am. Ceram. Soc., Vol.84, No.9, pp. 1981-1986. https://doi.org/10.1111/j.1151-2916.2001.tb00946.x
  34. Ryu, B.H., Baek, Y., Kim, Y.S., and Chang, I. (2015), "Basic Study for a Korean Lunar Simulant (KLS-1) Development", J. Korean Geotech. Soc., Vol.31, No.7, pp.53-63. https://doi.org/10.7843/KGS.2015.31.7.53
  35. Ryu, B.H., Wang, C.C., and Chang, I. (2018), "Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant", J. Aerosp. Eng., Vol.31, No.1, pp.0417083-1-11.
  36. Sato, M., Muton, T., Shimotuma, T., Ida, K., Motojima, O., Fujiwara, M., Takayama, S., Mizuno, M., Obata, S., Ito, K., Hirai, T., and Shimada, T. (2003), "Recent Development of Microwave Kilns for Industries in Japan", Proceedings of 3rd World Congress on Microwave and Radio Frequency Applications.
  37. Sauerborn, M., Neumann, A., Seboldt, W., and Diekmann, B. (2004), "Solar Heated Vacuum Pyrolysis of Lunar Soil", 35th COSPAR Scientific Assembly.
  38. Schreiner, S.S., Dominguez, J.A., Sibille, L., and Hoffman, J.A. (2016), "Thermophysical Property Models for Lunar Regolith", Adv. Space Res., Vol.57, No.5, pp.1209-1222. https://doi.org/10.1016/j.asr.2015.12.035
  39. Sikalidis, C. (2011), "Advances in ceramics: Synthesis and characterization, processing and specific applications", IntechOpen.
  40. Taylor, L.A. and Meek, T.T. (2005), "Microwave Sintering of Lunar Soil: Properties, Theory, and Practice", J. Aerosp. Eng., Vol.18, No.3, pp.188-196. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:3(188)
  41. Taylor, L.A., Pieters, C., Patchen, A., Taylor, D.-H.S., Morris, R.V., Keller, L.P., and McKay, D.S. (2010), "Mineralogical and Chemical Characterization of Lunar Highland Soils: Insights into the Space Weathering of Soils on Airless Bodies", J. Geophys. Res.-Planet, Vol.115, E02002, pp.1-14.
  42. Weiren, W., Chunlai, L., Wei, Z., Hongbo, Z., Jianjun, L., Weibin, W., Yan, S., Xin, R., Jun, Y., Dengyun, Y., Guangliang, D., Chi, W., Zezhou, S., Enhai, L., Jianfeng, Y., and Ziyuan, O. (2019), "Lunar Farside to be Explored by Chang'e-4", Nat. Geosci., Vol.12, pp.222-223. https://doi.org/10.1038/s41561-019-0341-7