과제정보
The author was supported by the National Natural Science Foundation of China (No. 12061001).
참고문헌
- D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416. https://doi.org/10.1081/AGB-120013328
- S. Bazzoni and L. Positselski, S-almost perfect commutative rings, J. Algebra 532 (2019), 323-356. https://doi.org/10.1016/j.jalgebra.2019.05.018
- D. Bennis and M. El Hajoui, On S-coherence, J. Korean Math. Soc. 55 (2018), no. 6, 1499-1512. https://doi.org/10.4134/JKMS.j170797
- L. Fuchs and L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, 84, American Mathematical Society, Providence, RI, 2001. https://doi.org/10.1090/surv/084
- S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
- H. Kim, M. O. Kim, and J. W. Lim, On S-strong Mori domains, J. Algebra 416 (2014), 314-332. https://doi.org/10.1016/j.jalgebra.2014.06.015
- J. W. Lim, A note on S-Noetherian domains, Kyungpook Math. J. 55 (2015), no. 3, 507-514. https://doi.org/10.5666/KMJ.2015.55.3.507
- J. W. Lim and D. Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218 (2014), no. 6, 1075-1080. https://doi.org/10.1016/j.jpaa.2013.11.003
- C. Nita, Objets noetheriens par rapport a une sous-categorie epaisse d'une categorie abelienne, Rev. Roumaine Math. Pures Appl. 10 (1965), 1459-1467.
- B. Stenstrom, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York, 1975.
- F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7