DOI QR코드

DOI QR Code

CONSTRUCTIONS OF REGULAR SPARSE ANTI-MAGIC SQUARES

  • Chen, Guangzhou (Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control School of Mathematics and Information Science Henan Normal University) ;
  • Li, Wen (School of Science Xichang University) ;
  • Xin, Bangying (School of Science Xichang University) ;
  • Zhong, Ming (Central Primary School of Tingzi Town)
  • Received : 2021.04.06
  • Accepted : 2022.04.04
  • Published : 2022.05.31

Abstract

For positive integers n and d with d < n, an n × n array A based on 𝒳 = {0, 1, …, nd} is called a sparse anti-magic square of order n with density d, denoted by SAMS(n, d), if each non-zero element of X occurs exactly once in A, and its row-sums, column-sums and two main diagonal-sums constitute a set of 2n + 2 consecutive integers. An SAMS(n, d) is called regular if there are exactly d non-zero elements in each row, each column and each main diagonal. In this paper, we investigate the existence of regular sparse anti-magic squares of order n ≡ 1, 5 (mod 6), and prove that there exists a regular SAMS(n, d) for any n ≥ 5, n ≡ 1, 5 (mod 6) and d with 2 ≤ d ≤ n - 1.

Keywords

Acknowledgement

The authors would like to thank Professor Zhu Lie of Soochow University for his encouragement and many helpful suggestions. The authors thank the anonymous reviewers for their careful check, constructive comments and suggestions that greatly improved the quality of this paper.

References

  1. G. Abe, Unsolved problems on magic squares, Discrete Math. 127 (1994), no. 1-3, 3-13. https://doi.org/10.1016/0012-365X(92)00462-Z
  2. M. Ahmed, Algebraic combinatorics of magic squares, Ph.D Dissertation, University of California, Davis, 2004.
  3. W. S. Andrews, Magic Squares and Cubes, Dover Publications, Inc., New York, 1960.
  4. W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, twelfth edition, University of Toronto Press, Toronto, ON, 1974.
  5. S. S. Block and S. A. Tavares, Before Sudoku, Oxford University Press, Oxford, 2009.
  6. G. Chen, H. Chen, K. Chen, and W. Li, Regular sparse anti-magic squares with small odd densities, Discrete Math. 339 (2016), no. 1, 138-156. https://doi.org/10.1016/j.disc.2015.08.008
  7. K. Chen, G. Chen, and W. Li, Regular sparse anti-magic squares with the second maximum density, Linear Algebra Appl. 457 (2014), 12-28. https://doi.org/10.1016/j.laa.2014.05.008
  8. K. Chen, W. Li, G. Chen, and R. Wei, Regular sparse anti-magic squares with maximum density, Ars Combin. 127 (2016), 167-183.
  9. G. Chen, W. Li, M. Zhong, and B. Xin, On the existence of regular sparse anti-magic squares of odd order, Graphs Combin. 38 (2022), no. 2, Paper No. 47, 39 pp. https://doi.org/10.1007/s00373-021-02437-z
  10. J. Cormie, V. Linek, S. Jiang, and R. Chen, Investigating the antimagic square, J. Combin. Math. Combin. Comput. 43 (2002), 175-197.
  11. I. D. Gray, Vertex-magic total labelings of regular graphs, SIAM J. Discrete Math. 21 (2007), no. 1, 170-177. https://doi.org/10.1137/050639594
  12. I. D. Gray and J. A. MacDougall, Sparse anti-magic squares and vertex-magic labelings of bipartite graphs, Discrete Math. 306 (2006), no. 22, 2878-2892. https://doi.org/10.1016/j.disc.2006.04.032
  13. I. D. Gray and J. A. MacDougall, Sparse semi-magic squares and vertex-magic labelings, Ars Combin. 80 (2006), 225-242.
  14. I. D. Gray and J. A. MacDougall, Vertex-magic labeling of regular graphs: disjoint unions and assemblages, Discrete Appl. Math. 160 (2012), no. 7-8, 1114-1125. https://doi.org/10.1016/j.dam.2011.11.025
  15. I. D. Gray and J. A. MacDougall, Vertex-magic labelings of regular graphs. II, Discrete Math. 309 (2009), no. 20, 5986-5999. https://doi.org/10.1016/j.disc.2009.04.031
  16. I. D. Gray, J. A. MacDougall, R. J. Simpson, and W. D. Wallis, Vertex-magic total labelings of complete bipartite graphs, Ars Combin. 69 (2003), 117-127.
  17. S. Jiang, Anti-magic squares of even order, Kodai Math. J. 25 (2002), no. 1, 1-7. https://doi.org/10.2996/kmj/1106171071
  18. A. Kotzig, On Magic Valuations of Trichromatic Graphs, Reports of the CRM, CRM-148, December 1971.
  19. J. M. Kudrle and S. B. Menard, Magic square, in: The CRC Handbook of Combinatorial Designs, 2nd Edition ( Edited by C. J. Colbourn, J. H. Dinitz), CRC Press, Boca Raton, FL, 2006, pp. 524-528.
  20. W. Li, K. J. Chen, and R. W. Su, Existence of regular sparse magic squares, Acta Math. Appl. Sin. 34 (2011), no. 6, 1118-1135.
  21. Y.-C. Liang, T.-L. Wong, and X. Zhu, Anti-magic labeling of trees, Discrete Math. 331 (2014), 9-14. https://doi.org/10.1016/j.disc.2014.04.021
  22. Y.-C. Liang and X. Zhu, Antimagic labeling of cubic graphs, J. Graph Theory 75 (2014), no. 1, 31-36. https://doi.org/10.1002/jgt.21718
  23. W. D. Wallis, Magic Graphs, Birkhauser Boston, Inc., Boston, MA, 2001. https://doi.org/10.1007/978-1-4612-0123-6
  24. W. D. Wallis, Vertex magic labelings of multiple graphs, Congr. Numer. 152 (2001), 81-83.