DOI QR코드

DOI QR Code

A Keyword Network Analysis of Standard Medical Terminology for Musculoskeletal System Using Big Data

빅데이터를 활용한 근골격계 표준의료용어에 대한 키워드 네트워크 분석

  • Received : 2021.11.26
  • Accepted : 2022.05.20
  • Published : 2022.05.28

Abstract

The purpose of this study is to suggest a plan to utilize atypical data in the health care field by inferring standard medical terms related to the musculoskeletal system through keyword network analysis of medical records of patients hospitalized for musculoskeletal disorders. The analysis target was 145 summaries of discharge with musculoskeletal disorders from 2015 to 2019, and was analyzed using TEXTOM, a big data analysis solution developed by The IMC. The 177 musculoskeletal related terms derived through the primary and secondary refining processes were finally analyzed. As a result of the study, the frequent term was 'Metastasis', the clinical findings were 'Metastasis', the symptoms were 'Weakness', the diagnosis was 'Hepatitis', the treatment was 'Remove', and the body structure was 'Spine' in the analysis results for each medical terminology system. 'Oxycodone' was used the most. Based on these results, we would like to suggest implications for the analysis, utilization, and management of unstructured medical data.

본 연구는 근골격계 질환으로 입원한 환자의 의무기록지 키워드 네트워크 분석을 통해 근골격계와 관련된 표준의료용어를 유추하여 보건의료현장의 비정형화된 데이터 활용 방안을 제시하기 위함이다. 분석 대상은 2010년부터 2019년까지 근골격계 질환 환자의 입퇴원요약지 145부로, 더아이엠씨(The IMC)에서 개발한 빅데이터 분석 솔루션인 TEXTOM을 활용하여 분석하였다. 1차·2차 정제과정을 통해 도출된 177개의 근골격계 관련 용어를 최종 분석하였다. 연구결과 다빈도 용어는 'Metastasis', 의료용어 체계별 분석 결과에서 임상소견은 'Metastasis', 증상은 'Weakness', 진단은 'Hepatitis', 처치는 'Remove', 신체구조는 'Spine', 약물은 'Oxycodone'이 가장 많이 사용되었다. 이러한 결과를 바탕으로 정형화되지 않은 의료데이터의 분석과 활용 및 관리 방안에 대한 시사점을 제안하고자 한다.

Keywords

Acknowledgement

This research was supported by Korea Evaluation Institute of Industrial Technology.(No. 20002519).

References

  1. J. U. Kim, S. Y. Sin, H. S. Cha, & S. J. An. (2015). Smart health data based on smart medical technology standards. Communications of the Korean Institute of Information Scientists and Engineers, 33(3), 60-66.
  2. C. Snijders, U. Matzat, & U. D. Reips. (2012). "Big Data": Big gaps of knowledge in the field of Internet, International Journal of Internet Science, 7(1), 1-5.
  3. M. K. Kim, & Y. B. Cho. (2019). An Analysis of Impact on the Quality of Life for Chronic Patients based Big Data. Journal of the Korea Institute of Information and Communication Engineering, 23(11), 1351-1356. DOI : 10.6109/jkiice.2019.23.11.1351
  4. M. K. Kim, & Y. B. Cho. (2018). An Analysis of Factors Affecting Quality of Life through the Analysis of Public Health Big Data. Journal of the Korea Institute of Information and Communication Engineering, 22(6), 835-841. DOI : 10.6109/jkiice.2018.22.6.835
  5. M. H. Park, Y. B. Cho, S. Y. Kim, J. B. Park, & J. H. Park. (2018). Analysis of Factors for Korean Women's Cancer Screening through Hadoop-Based Public Medical Information Big Data Analysis. Journal of the Korea Institute of Information and Communication Engineering, 22(10), 1277-1286. DOI : 10.6109/jkiice.2018.22.10.1277
  6. B. K. Choi, E. A. Choi, & M. H. Nam. (2019). Development of Clinical Terminology System for Human Body: Convergence Research of SNOMEDCT. Journal of Digital Convergence, 17(4), 177-185. DOI : 10.14400/JDC.2019.17.4.177
  7. D. Kalra. (2006). Electronic health record standards. Yearbook of medical informatics, 15(1), 136-144. https://doi.org/10.1055/s-0038-1638463
  8. R. H. Dolin, L. Alschuler, S. Boyer, C. Beebe, F. M. Behlen, P. V. Biron, A. Shabo, & A. Shvo. (2006). HL7 Clinical Document Architecture Release 2. Journal of the American Medical Informatics Association, 13(1), 30-39. https://doi.org/10.1016/S1067-5027(05)00187-8
  9. H. A. Park, H. Y. Kim, & Y. H. Min. (2012). Use of clinical terminology for semantic interoperability of electronic health records. Journal of the Korean Medical Association, 55(8), 720-728. https://doi.org/10.5124/jkma.2012.55.8.720
  10. H. S. Jeong, & Y. J. Lee. (2018). Factors Affecting Quality of life in the Elderly with Chronic Musculoskeletal Pain. Journal of Muscle and Joint Health, 25(2), 92-103. DOI : 10.5953/JMJH.2018.25.2.92
  11. B. M. Kim, & K. H. Lee. (2020). An exploration of a directions for preparing early childhood finance policy to promote common good based on complexity: Focusing on social discourse and competitive discourse analysis. Journal of Learner-Centered Curriculum and Instruction, 20(10), 407-438. DOI : 10.22251/jlcci.2020.10.407
  12. K. H. Lee. (2019) An exploration of a direction to promote early childhood playfulness based on big data. Journal of Educational Innovation Research, 29(3), 257-289. DOI: 10.22251/jlcci.2019.19.15.891
  13. H. I. Hwang, K. H. Lee, & H. S. Je. (2018). A network analysis of young children' self-esteem based on big data. Korean Journal of Early Childhood Education, 38(4), 213-235. https://doi.org/10.18023/KJECE.2018.38.4.009
  14. W. S. Suh, K. H. Lee, & S. W. Kim. (2019). A keyword network analysis for early childhood education finance: Focus on big data. The Journal of Learner-Centered Curriculum and Instruction, 19(12), 97-124. DOI : 10.22251/jlcci.2019.19.12.97
  15. H. I. Hwang, S. H. Kim, & K. H. Lee. (2018). A network analysis of mothers' happiness concepts based on big data. Journal of Future Early Childhood Education, 25(2), 45-66. DOI: 10.22155/jfece.25.2.45.66
  16. B. M. Kim, J. J. Youn, S. J. Jeong, & K. H. Lee. (2018). Keyword network analysis for creativity and personality of early childhood teachers: Focus on big data. Indian Journal of Public Health Research & Development, 9(11), 850-856. DOI:10.5958/0976-5506.2018.01566.8.
  17. B. M. Kim, & K. H. Lee. (2020). Keyword network analysis on the integrated research trends of early childhood education and childcare. International Journal of Innovation Creativity and Change, 13(3), 595-607.
  18. S. S. Lee. (2012). Network analysis methods. Seoul, Korea: Nonhyung.
  19. TEXTOM. Big data analysis solution [Internet]. Available: http://www.textom.co.kr.
  20. B. M. Kim, & K. H. Lee. (2021). A study on exploring directions for early childhood safety education based on big data: Focus on semantic network analysis. Review of International Geographical Education Online, 11(2), 636-647. DOI : 10.33403/rigeo.800461
  21. K. H. Lee, & H. S. Je. (2018). A keyword network analysis of young children's creativity and personality based on big data. Journal of Future Early Childhood Education, 25(4), 121-144. DOI: 10.22155/jfece.25.4.121.144
  22. K. H. Lee, & H. I. Hwang. (2020). A discourse analysis of Nuri-curriculum evaluation based on big data. Journal of Future Early Childhood Education, 27(4), 77-109. DOI: 10.22155/jfece.27.4.77.109
  23. K. H. Lee, & H. I. Hwang. (2020). A keyword network analysis of '2019 revised Nuri-curriculum evaluation' based on bis data. The Journal of Korea Open Association for Early Childhood Education, 25(4), 79-109. DOI : 10.20437/KOAECE25-4-04
  24. S. P. Borgatti, M. G. Evertt, & J. C. Johnson. (2013) Analyzing social networks. Thousand Oaks, CA: Sage Publications. DOI : 10.1080/10705422.2016.1209400
  25. L. C. Freeman. (1992). Research methods in social network analysis. New York, America: Routledge. DOI : 10.4324/9781315128511