Acknowledgement
This research is supported by Taif University Researchers Supporting Project number (TURSP-2020/305), Taif University, Taif, Saudi Arabia. Also, the authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a research group program under grant number R.G.P.2/112/41. The authors express their appreciation to the Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, for funding this research work through the project number: (IFP-KKU-2020/10).
References
- Abuhimd, H., Uddin, G.M., Zeid, A., Jung, Y.J. and Kamarthi, S. (2013), "Chemical vapor deposition-grown vertically aligned single walled carbon nanotubes length assurance", Int. J. Adv. Manuf. Tech., 64(1-4), 545-553. https://doi.org/10.1007/s00170-012-4426-3.
- Ajri, M. and Fakhrabadi, M.M.S. (2018), "Nonlinear free vibration of viscoelastic nanoplates based on modified couple stress theory", J. Comput. Appl. Mech., 49(1), 44-53. https://doi.org/10.22059/JCAMECH.2018.228477.129.
- Arghavan, S. and Singh, A. (2011), "On the vibrations of single-walled carbon nanotubes", J. Sound Vib., 330(13), 3102-3122. https://doi.org/10.1016/j.jsv.2011.01.032.
- Avouris, P., Appenzeller, J., Martel, R. and Wind, S.J. (2003), "Carbon nanotube electronics", Proc. IEEE, 91(11), 1772-1784. https://doi.org/10.1109/JPROC.2003.818338.
- Baughman, R.H., Zakhidov, A.A. and de Heer, W.A. (2002), "Carbon nanotubes-the route toward applications", Science, 297(5582), 787-792. https://doi.org/10.1126/science.1060928/
- Belhadj, A., Boukhalfa, A. and Belalia, S.A. (2017), "Free vibration analysis of a rotating nanoshaft based SWCNT", Eur. Phys. J. Plus, 132, 513. https://doi.org/10.1140/epjp/i2017-11783-2.
- Choi, W.B., Bae, E., Kang, D., Chae, S., Cheong, B. and Ko, J. (2004), "Aligned carbon nanotubes for nanoelectronics", Nanotechnology, 15(10), S512-S516. https://doi.org/10.1088/0957-4484/15/10/003
- Chowdhury, R., Wang, C., Adhikari, S. (2010), "Low frequency vibration of multiwall carbon nanotubes with heterogeneous boundaries", J. Phys. D Appl. Phys., 43, 085405. https://doi.org/10.1088/0022-3727/43/8/085405
- Chuen, J. (2017), "Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect", J. Nanomater., 11(5700),1-6. https://doi.org/10.1155/2017/6142927,1-6.
- Collins, P.G. and Avouris, P. (2000), "Nanotubes for electronics", Sci. Am., 283(6), 62-69. https://doi.org/10.1038/scientificamerican1200-62
- Dai, H.J. (2002), "Carbon nanotubes: Opportunities and challenges", Surface Sci., 500(1-3), 218-241. https://doi.org/10.1016/S0039-6028(01)01558-8.
- Ghavanloo, E. and Fazelzadeh, S.A. (2012), "Effects of the growth time and the thickness of the buffer layer on the quality of the carbon nanotubes", Appl. Math. Model., 36, 4988-5000. https://doi.org/10.1155/2017/6142927.
- Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
- Ebrahimi, F. and Farazmandnia, N. (2018), "Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment", Adv. Aircr. Spacecr. Sci., 5(1), 107-128. https://doi.org/10.12989/aas.2018.5.1.107.
- Foroutan K., Ahmadi H. and Carrera E. (2019), "Nonlinear vibration of imperfect FG-CNTRC cylindrical panels under external pressure in the thermal environment", Compos. Struct., 227, 111310. https://doi.org/10.1016/j.compstruct.2019.111310.
- Foroutan K., Carrera E. and Ahmadi H. (2021), "Nonlinear hygrothermal vibration and buckling analysis of imperfect FG-CNTRC cylindrical panels embedded in viscoelastic foundations", Eur. J. Mech. A Solids, 85, 104107. https://doi.org/10.1016/j.euromechsol.2020.104107.
- He, X.Q., Eisenberger, M. and Liew, K.M. (2006), "The effect of van der waals interaction modelling on the vibration characteristics of multiwalled carbon nanotubes", J. Appl. Phys., 100(12), 124317. https://doi.org/10.1063/1.2399331.
- Hussain, M., Naeem, M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
- Iijima S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
- Khan, R., Khan, M.I., Almesfer, M.K., Elkhaleefa A., Ali, I.H., Ullah, A., Rahman, N., Khan, M.S., Khan, A.A. and Khan, A. (2022), "The structural and dilute magnetic properties of (Co, Li) co-doped-ZnO semiconductor nanoparticles", MRS Commun., 1-6. https://doi.org/10.1557/s43579-022-00153-0.
- Liu, J., Fan, S.S. and Dai, H.J. (2004), "Recent advances in methods of forming carbon nanotubes", MRS Bull., 29(4), 244-250. https://doi.org/10.1557/mrs2004.75.
- Liu, R. and Wang, L. (2015), "Coupling between flexural modes in free vibration of single-walled carbon nanotubes", AIP Adv., 5(12), 127110. https://doi.org/10.1063/1.4937743.
- Preethi, K., Raghu, P., Rajagopal, A. and Reddy, J. (2018), "Nonlocal nonlinear bending and free vibration analysis of a rotating laminated nano cantilever beam", Mech. Adv. Mater. Struct., 25(5), 439-450. https://doi.org/10.1080/15376494.2016.1278062.
- Qian, D., Wagner, J.G., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002) "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55(6), 495-533. https://doi.org/10.1115/1.1490129.
- Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Mech. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004.
- Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.031.
- Selim, M.M. (2007), "Static deformation of an irregular initially stressed medium", Appl. Math. Comput., 188(2), 1274-1284. https://doi.org/10.1016/j.amc.2006.11.003.
- Selim, M.M. (2010), "Torsional vibration of carbon nanotubes under initial compression stress", Brazil. J. Phys., 40(3), 283-287. https://doi.org/10.1590/S0103-97332010000300004
- Selim, M.M. (2011), "Vibrational analysis of initially stressed carbon nanotubes", Acta Phys. Pol. A, 119(6), 778-782. https://doi.org/10.12693/APhysPolA.119.778
- Selim, M.M. (2020a), "Dispersion relation for transverse waves in pre-stressed irregular single-walled carbon nanotubes", Physica Scripta, 95(11), 115218. https://doi.org/10.1088/1402-4896/abc0c4
- Selim, M.M. (2020b), "Propagation of longitudinal waves in a single-walled carbon nanotube under thermoelastic damping", J. Micro Nano Lett., 15(11), 717-722. https://doi.org/10.1049/mnl.2019.0801
- Selim, M.M. (2021), "Torsional vibration of irregular single-walled carbon nanotube incorporating compressive initial stress effects", J. Mech., 37, 260-269. https://doi.org/10.1093/jom/ufab002.
- Selim, M.M and Ahmed, M.K. (2006), "Propagation and attenuation of seismic body waves in dissipative medium under initial and couple stresses", Appl. Math. Comput., 182(2), 1264-1274. https://doi.org/10.1016/j.amc.2006.05.005.
- Selim, M.M., Abe, S. and Harigaya, K. (2009), "Effects of initial compression stress on wave propagation in carbon nanotubes", Eur. Phys. J. B, 69(4), 523-528. https://doi.org/10.1140/epjb/e2009-00184-5.
- Selim M.M. and Nofal, T.A. (2021), "A mathematical model of torsional vibrations of SWCNTs incorporating surface irregularity effects", Physica Scripta, 96(5), 055709. https://doi.org/10.1088/1402-4896/abecfc
- Shaban, M. and Alibeigloo, A. (2014), "Three dimensional vibration and bending analysis of carbon nanotubes embedded in elastic medium based on theory of elasticity", Lat. Am. J. Solid Struct., 11, 2122-2140. https://doi.org/10.1590/S1679-78252014001200002.
- Strozzi, M., Manevitch, L.I., Pellicano, F.,Smirnov, V.V. and Shepelev, D.S.(2014), "Low-frequency linear vibrations of single-walled carbon nanotubes: Analytical and numerical models", J. Sound Vib., 333(13), 2936-2957. https://doi.org/10.1016/j.jsv.2014.01.016
- Tsukagoshi, K., Yoneya, N., Uryu, S., Aoyagi, Y., Kanda, A. and Ootuka Y. (2002), "Carbon nanotube devices for electronics", Physica B, 323(1-4), 107-114. https://doi.org/10.1016/S0921-4526(02)00993-6.
- Thostenson, E.T. Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X.
- Ullah, A., Alzahrani, E.O., Shah, Z., Ayaz, M. and Zhang, S.I. (2019a), "Nanofluids thin film flow of Reiner-Philippoff fluid over an unstable stretching surface with brownian motion and thermophoresis effects", Coatings, 9(1), 21. https://doi.org/10.3390/coatings9010021.
- Ullah, A., Shah, Z., Kumam, P., Ayaz, M., Islam, S. and Jameel, M. (2019b), "Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation", Processes, 7(5), 262. https://doi.org/10.3390/pr7050262.
- Ullah, A., Hafeez, A., Mashwani, W.K., Kumam, W., Kumam, P. and Ayaz, M. (2020), "Non-linear thermal radiations and mass transfer analysis on the processes of magnetite carreau fluid flowing past a permeable stretching/shrinking surface under cross diffusion and hall effect", Coatings, 10(6), 523. https://doi.org/10.3390/coatings10060523.
- Wang, X., Jiang, Q., Xu, W., Cai, W., Inoue, Y. and Zhu, Y. (2013), "Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/ bismaleimide composites", Carbon, 53, 145-152. https://doi.org/10.1016/j.carbon.2012.10.041.
- Xu, K.Y., Aifantis, E.C. and Yan, Y.H. (2008), "Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes", J. Appl. Phys., 75(2), 021013. https://doi.org/10.1115/1.2793133.
- Yi, X., Li, B. and Wang, Z. (2019), "Vibration analysis of fluid conveying carbon nanotubes based on nonlocal timoshenko beam theory by spectral element method", Nanomaterials, 9(12), 1780. https://doi.org/10.3390/nano9121780.
- Zargaripoor, A. and Bahrami, A. (2018), "Free vibration and buckling analysis of third-order shear deformation plate theory using exact wave propagation approach", J. Comput. Appl. Mech., 49(1), 102-124. https://doi.org/10.22059/JCAMECH.2018.249468.227.
- Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibration behavior of single-walled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1(1), 1-18.