과제정보
E. H. Shim was partially supported by the Hanyang University Postdoctoral Research Fund (HY202100000000785).
참고문헌
- I. Chang, Y. Lee & J. Roh: Nearly general septic functional equation. J. Funct. Spaces 2021 (2021), Art. ID 5643145.
- Y. Ding & Y.Z. Xu: Approximate solution of generalized inhomogeneous radical quadratic functional equations in 2-Banach spaces. J. Inequal. Appl. 2019 (2019), Paper No. 31.
- F. Drljevic: On a functional which is quadratic on A-orthogonal vectors. Publ. Inst. Math. (Beograd) 54 (1986), 63-71.
- M. Fochi: Functional equations in A-orthogonal vectors. Aequationes Math. 38 (1989), 28-40. https://doi.org/10.1007/BF01839491
- P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- R. Ger & J. Sikorska: Stability of the orthogonal additivity. Bull. Polish Acad. Sci. Math. 43 (1995), 143-151.
- V. Govindan, C. Park, S. Pinelas & S. Baskaran: Solution of a 3-D cubic functional equation and its stability. AIMS Math. 5 (2020), 1693-1705. https://doi.org/10.3934/math.2020114
- D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- K. Jun & H. Kim: On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces. J. Math. Anal. Appl. 332 (2007), 1335-1350. https://doi.org/10.1016/j.jmaa.2006.11.024
- S. Jung, D. Popa & M.T. Rassias: On the stability of the linear functional equation in a single variable on complete metric spaces. J. Global Optim. 59 (2014), 13-16.
- Y. Lee, S. Jung & M.T. Rassias: Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation. J. Math. Inequal. 12 (2018), 43-61.
- C. Park & A. Bodaghi: Two multi-cubic functional equations and some results on the stability in modular spaces. J. Inequal. Appl. 2020 (2020), Paper No. 6.
- J.M. Rassias: On approximately of approximately linear mappings by linear mappings. J. Funct. Anal. 46 (1982), 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
- J.M. Rassias: On the stability of the Euler-Lagrange functional equation. Chinese J. Math. 20 (1992), 185-190.
- J.M. Rassias: Solution of the Ulam stability problem for Euler-Lagrange quadratic mappings. J. Math. Anal. Appl. 220 (1998), 613-639. https://doi.org/10.1006/jmaa.1997.5856
- Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- K. Ravi, M. Arunkumar & J.M. Rassias: On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation. Int. J. Math. Sci. 3 (2008), no. 8, 36-47.
- G. Szabo: Sesquilinear-orthogonally quadratic mappings. Aequationes Math. 40 (1990), 190-200. https://doi.org/10.1007/BF02112295
- K. Tamilvanan, N. Alessa, K. Loganathan, G. Balasubramanian & N. Namgyel: General solution and satbility of additive-quadratic functional equation in IRN-space. J. Funct. Spaces 2021 (2021), Art. ID 8019135.
- S.M. Ulam: A Colloection of the Mathematical Problems. Interscience Publ., New York, 1960.