
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
http://dx.doi.org/10.7468/jksmeb.2022.29.2.189 ISSN(Online) 2287-6081
Volume 29, Number 2 (May 2022), Pages 189–199

ORTHOGONAL STABILITY OF AN EULER-LAGRANGE-JENSEN

(a, b)-CUBIC FUNCTIONAL EQUATION

Narasimman Pasupathi a, John Michael Rassias b, Jung Rye Lee c, ∗

and Eun Hwa Shim d, ∗

Abstract. In this paper, we introduce a new generalized (a, b)-cubic Euler-Lagrange-
Jensen functional equation and obtain its general solution. Furthermore, we prove
the Hyers-Ulam stability of the new generalized (a, b)-cubic Euler-Lagrange-Jensen
functional equation in orthogonality normed spaces.

1. Introduction

The following question concerning the stability of homomorphisms was raised by

Ulam [20].

Let G be a group and G′ be a metric group with metric ρ(. , .). Given ϵ > 0

does there exist a δ > 0 such that if a function f : G → G′ satisfies the inequality

ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then there exists a homomorphism h : G →
G′ exists with ρ(f(x), h(x)) < ϵ for all x ∈ G?

In 1941, Hyers [8] proved the following celebrated theorem as a partial solution

to Ulam’s question.

Theorem 1 ([8]). Assume that E1 and E2 are Banach spaces. If a mapping f :

E1 → E2 satisfies the inequality

||f(x+ y)− f(x)− f(y)|| ≤ ϵ

for some ϵ ≥ 0 and for all x, y ∈ E1, then the limit

a(x) = lim
n→∞

2−nf(2nx)
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exists for each x in E1 and a : E1 → E2 is the unique additive mapping such that

||f(x)− a(x)|| ≤ ϵ

for all x ∈ E1.

In 1978, Th. M. Rassias [16] provided a generalized solution to Ulam’s problem

where he used the controlled function as the sum of powers of norms. In 1982, J. M.

Rassias [13] generalized the Hyers stability result by presenting a weaker condition

controlled by a product of different powers of norms. Later, J. M. Rassias et al. [17]

discussed the stability of quadratic functional equation by using the mixed powers

of norms. See [1, 2, 5, 7, 10, 11, 12, 19] for more information on functional equations

and functional inequalities and their stability.

Ger and Sikorska discussed the orthogonal stability of the Cauchy functional

equation in [6]. The orthogonally quadratic functional equation was generalized by

Drljevic [3], Fochi [4] and Szabo [18].

Definition 1. A vector space X is called an orthogonality vector space if there is a

relation x ⊥ y on X such that

(i) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X;

(ii) independence: if x ⊥ y and x, y ̸= 0 , then x, y are linearly independent;

(iii) homogeneity: if x ⊥ y, then ax ⊥ by for all a, b ∈ R;
(iv) the Thalesian property: if P is a two-dimensional subspace of X, then

(a) for every x ∈ P there exists 0 ̸= y ∈ P such that x ⊥ y ;

(b) there exist vectors x, y ̸= 0 such that x ⊥ y and x+ y ⊥ x− y.

Any vector space can be made into an orthogonality vector space if we define x ⊥
0, 0 ⊥ x for all x and for nonzero vector x, y define x ⊥ y if and only if x, y are

linearly independent. The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x

for all x, y ∈ X.

Definition 2. The pair (x,⊥) is called an orthogonality space. It becomes orthogo-

nality normed space when the orthogonality space is equipped with a norm.

J. M. Rassias [14, 15] investigated the stability of Euler-Lagrange type quadratic

functional equation

f(rx+ sy) + f(sx− ry) = (r2 + s2) [f(x) + f(y)]

for fixed real numbers r, s with r ̸= 0, s ̸= 0.
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In 2007, Jun and Kim [9] introduced the following generalized Euler-Lagrange

type cubic functional equation

f(ax+ by) + f(bx+ ay) = (a+ b)(a− b)2 [f(x) + f(y)] + ab(a+ b)f(x+ y)(1.1)

for fixed integers a, b with a ̸= 0, b ̸= 0, a± b ̸= 0.

In this paper, we investigate the various stabilities related to Ulam problem of

the following (a, b)-cubic Euler-Lagrange-Jensen functional equation

a3

a+ b
f

(
x+

b

a
y

)
+

b3

a+ b
f
(
x+

a

b
y
)

(1.2)

= (a− b)2 (f(x) + f(y)) +
ab

8
f (2x+ 2y)

for integers a = 2p or a = 3p and b = 2q or b = 3q with a ̸= b and a + b ̸= 1 for

integers p, q in the concept of orthogonality normed spaces.

Definition 3. A mapping f : A → B is called orthogonal Euler-Lagrange-Jensen

type cubic if it satisfies the functional equation (1.2) for all x, y ∈ A with x ⊥ y

where A is an orthogonality space and B is a real Banach space.

Throughout this paper, let (A,⊥) denote an orthogonality normed space with

norm ∥ · ∥A and (B, ∥ · ∥B) be a Banach space. We define

Ef (x, y) =
a3

a+ b
f

(
x+

b

a
y

)
+

b3

a+ b
f
(
x+

a

b
y
)

− (a− b)2 (f(x) + f(y))− ab

8
f (2x+ 2y)

for all x, y ∈ A with x ⊥ y. Assume that a = 2p or a = 3p and b = 2q or b = 3q with

a ̸= b and a+ b ̸= 1 for integers p, q.

2. General Solution of (a, b)-cubic Euler-Lagrange-Jensen
Functional Equation

Theorem 2. Let X and Y be real vector spaces. An odd mapping f : X → Y

satisfies the (a, b)-cubic Euler-Lagrange-Jensen functional equation (1.2) if and only

if it satisfies the functional equation (1.1).

Proof. Suppose that a mapping f : X → Y satisfies (1.2). Putting x = y = 0 in

(1.2), we get f(0) = 0. Let y = 0 in (1.2), we obtain

a3

a+ b
f (x) +

b3

a+ b
f (x) = (a− b)2f(x) +

ab

8
f (2x)
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and so

(2.1) f(2x) = 8f(x)

for all x ∈ X. Replacing x by 2x in (2.1) and again using (2.1), we obtain

(2.2) f(4x) = 64f(x)

for all x ∈ X. It follows from (2.1) and (2.2) that

(2.3) f(2px) = 23pf(x)

for all x ∈ X and all integers p. Replacing x by 3x in (2.1) and using (2.3), we

obtain

(2.4) f(3x) = 27f(x)

for all x ∈ X. It follows from (2.4) that

f(3px) = 33pf(x)

for all x ∈ X and all integers p. So we conclude that

f(ax) = a3f(x)

for all x ∈ X and all a = 2p or a = 3p.

Similarly, we can obtain that

f(bx) = b3f(x)

for all x ∈ X and all b = 2q or b = 3q. Replacing y by aby in (1.2) and in the

resultant again replacing x by y and y by x, we have

a3f
(
b2x+ y

)
+ b3f

(
a2x+ y

)
(2.5)

= (a+ b)(a− b)2(f(abx) + f(y)) +
ab(a+ b)

8
f (2abx+ 2y)

for all x, y ∈ X. Replacing y by −y and using the oddness of f , we obtain

a3f
(
b2x− y

)
+ b3f

(
a2x− y

)
(2.6)

= (a+ b)(a− b)2(f(abx)− f(y)) +
ab(a+ b)

8
f (2abx− 2y)

for all x, y ∈ X. Adding (2.5) and (2.6), we get

a3
(
f
(
b2x+ y

)
+ f

(
b2x− y

))
+ b3

(
f
(
a2x+ y

)
+ f

(
a2x− y

))
(2.7)

= 2(a+ b)(a− b)2f(abx) +
ab(a+ b)

8
(f (2abx+ 2y) + f (2abx− 2y))
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for all x, y ∈ X. Replacing y by aby in (2.7), we get

f(ax+ by) + f(ax− by) + f(bx+ ay) + f(bx− ay)(2.8)

= 2(a+ b)(a− b)2f(x) + ab(a+ b) [f(x+ y) + f(x− y)]

for all x, y ∈ X. Replacing x by y and y by x in (2.8) and again adding the resultant

with (2.8) and using the oddness of f , we obtain (1.1).

Conversely, assume f satisfies the functional equation (1.1). Letting y = 0 in

(1.1), we get

(2.9) f(ax) = a3f(x) if and only if f(bx) = b3f(x)

for all x ∈ X. Using (2.9) and (1.1), we have

a3

a+ b
f

(
x+

b

a
y

)
+

b3

a+ b
f
(
x+

a

b
y
)

(2.10)

= (a− b)2 (f(x) + f(y)) + abf (x+ y)

for all x, y ∈ X. Replacing (x, y) by (2x, 2y) in (2.10) and using (2.9), we obtain

(1.2). �

3. Hyers-Ulam Stability of (a, b)-cubic Euler-Lagrange-Jensen
Functional Equation

Theorem 3. Let µ and s(s < 3) be nonnegative real numbers. Let f : A → B be a

mapping fulfilling

(3.1) ∥Ef (x, y)∥B ≤ µ {∥x∥sA + ∥y∥sA}

for all x, y ∈ A with x ⊥ y. Then there exists a unique orthogonally Euler-Lagrange-

Jensen type cubic mapping C : A → B such that

(3.2) ∥f(x)− C(x)∥B ≤ 8µ

ab(8− 2s)
∥x∥sA

for all x ∈ A. The mapping C(x) is defined by

C(x) = lim
n→∞

f(2nx)

8n

for all x ∈ A.

Proof. Letting x = y = 0 in (3.1), we get f(0) = 0. Setting y = 0 in (3.1), we obtain

(3.3)

∥∥∥∥ab(f(2x)

8
− f(x)

)∥∥∥∥
B

≤ µ(∥x∥sA)
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for all x ∈ A. Since x ⊥ 0, we have

(3.4)

∥∥∥∥f(2x)8
− f(x)

∥∥∥∥
B

≤ µ

ab
∥x∥sA

for all x ∈ A. Now replacing x by 2x and dividing by 8 in (3.4) and summing the

resulting inequality with (3.4), we obtain∥∥∥∥f(22x)82
− f(x)

∥∥∥∥
B

≤ µ

ab

{
1 +

2s

8

}
∥x∥sA

for all x ∈ A. In general, using induction on a positive integer n we obtain that∥∥∥∥f(2nx)8n
− f(x)

∥∥∥∥
B

≤ µ

ab

n−1∑
k=0

2s k

8k
∥x∥sA ≤ µ

ab

∞∑
k=0

2s k

8k
∥x∥sA(3.5)

for all x ∈ A. In order to prove the convergence of the sequence {f(2nx)
8n }, replacing

x by 2mx and dividing by 8m in (3.5), for any n,m > 0, we obtain∥∥∥∥f (2n2mx)

8(n+m)
− f(2mx)

8m

∥∥∥∥
B

=
1

8m

∥∥∥∥f (2n2mx)

8n
− f (2mx)

∥∥∥∥
B

≤ 1

8m
µ

ab

n−1∑
k=0

2s k

8k
∥2mx∥sA

≤ µ

ab

∞∑
k=0

1

2(3−s)(k+m)
∥x∥sA .(3.6)

Since s < 3, the right hand side of (3.6) tends to 0 as m → ∞ for all x ∈ A.

Thus {f(2nx)
8n } is a Cauchy sequence. Since B is complete, there exists a mapping

C : A → B such that

C(x) = lim
n→∞

f(2nx)

8n
∀x ∈ A.

Letting n → ∞ in (3.5), we get the formula (3.2) for all x ∈ A. To prove C satisfies

(1.2), replacing (x, y) by (2nx, 2ny) in (3.1) and dividing by 8n, we obtain

1

8n

∥∥∥ a3

a+ b
f

(
2n

(
x+

b

a
y

))
+

b3

a+ b
f
(
2n

(
x+

a

b
y
))

− (a− b)2 (f(2nx) + f(2ny))

− ab

8
f (2n(2x+ 2y))

∥∥∥
B
≤ µ

8n
{∥2nx∥sA + ∥2ny∥sA} .

Taking the limit as n → ∞ in the above inequality, we get∥∥∥ a3

a+ b
C

(
x+

b

a
y

)
+

b3

a+ b
C
(
x+

a

b
y
)

− (a− b)2 (C(x) + C(y))− ab

8
C (2x+ 2y)

∥∥∥
B
≤ 0,
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which gives

a3

a+ b
C

(
x+

b

a
y

)
+

b3

a+ b
C
(
x+

a

b
y
)

= (a− b)2 (C(x) + C(y)) +
ab

8
C (2x+ 2y)

for all x, y ∈ A with x ⊥ y. Therefore C : A → B is an orthogonally Euler-Lagrange-

Jensen type cubic mapping which satisfies (1.2).

Let C ′ be another orthogonally Euler-Lagrange-Jensen type cubic mapping sat-

isfying (1.2) and the inequality (3.2). Then∥∥C (x)− C ′ (x)
∥∥
B
=

1

8n
∥∥C (2nx)− C ′ (2nx)

∥∥
B

≤ 1

8n
(
∥C (2nx)− f (2nx)∥B +

∥∥f (2nx)− C ′ (2nx)
∥∥
B

)
≤ 16µ

ab(8− 2s)

1

2n(3−s)
∥x∥sA

→ 0 as n → ∞

for all x ∈ A. Therefore C is unique. This completes the proof of the theorem. �

Theorem 4. Let µ and s(s > 3) be nonnegative real numbers. Let f : A → B be

a mapping satisfying (3.1) for all x, y ∈ A with x ⊥ y. Then there exists a unique

orthogonally Euler-Lagrange-Jensen type cubic mapping C : A → B such that

∥f (x)− C (x)∥B ≤ 8µ

ab(2s − 8)
∥x∥sA

for all x ∈ A. The mapping C(x) is defined by

C(x) = lim
n→∞

8nf
( x

2n

)
for all x ∈ A.

Proof. Replace x by x
2 in the inequality (3.3). Then the rest of the proof is similer

to that of Theorem 3. �

4. Stability of (a, b)-cubic Euler-Lagrange-Jensen Functional
Equation

Theorem 5. Let f : A → B be a mapping satisfying the inequality

∥Ef (x, y)∥B ≤ µ
{
∥x∥2sA + ∥y∥2sA + ∥x∥sA ∥y∥sA

}
(4.1)
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for all x, y ∈ A where µ and s are constants with, µ, s > 0 and s < 3
2 . Then the

limit

C(x) = lim
n→∞

f (2nx)

8n
(4.2)

exists for all x ∈ A and C : A → B is the unique Euler-Lagrange-Jensen type cubic

mapping such that

∥f(x)− C(x)∥B ≤ 8µ

ab(8− 22s)
∥x∥2sA

for all x ∈ A.

Proof. Letting x = y = 0 in (4.1), we get f(0) = 0. Letting y = 0 in (4.1), we obtain

(4.3)

∥∥∥∥f (2x)

8
− f (x)

∥∥∥∥
B

≤ µ

ab
∥x∥2sA

for all x ∈ A. Now replacing x by 2x and dividing by 8 in (4.3) and summing the

resulting inequality with (4.3), we obtain∥∥∥∥∥f
(
22x

)
82

− f (x)

∥∥∥∥∥
B

≤ µ

ab

{
1 +

22s

8

}
∥x∥2sA

for all x ∈ A. Using induction on positive integers n, we obtain that∥∥∥∥f (2nx)

8n
− f (x)

∥∥∥∥
B

≤ µ

ab

n−1∑
k=0

(
22s

8

)k

∥x∥2sA ≤ µ

ab

∞∑
k=0

(
22s

8

)k

∥x∥2sA(4.4)

for all x ∈ A. In order to prove the convergence of the sequence {f(2nx)
8n }, replacing

x by 2mx and dividing by 8m in (4.4), for any n,m > 0, we obtain∥∥∥∥f (2n2mx)

8(n+m)
− f (2mx)

8m

∥∥∥∥
B

=
1

8m

∥∥∥∥f (2n2mx)

8n
− f(2mx)

∥∥∥∥
B

≤ 1

8m
µ

ab

n−1∑
k=0

(
22s

8

)k

∥2mx∥2sA

≤ µ

ab

∞∑
k=0

1

2(3−2s)(k+m)
∥x∥2sA(4.5)

Since s < 3
2 , the right hand side of (4.5) tends to 0 as m → ∞ for all x ∈ A.

Thus {f(2nx)
8n } is a Cauchy sequence. Since B is complete, there exists a mapping

C : A → B such that

C(x) = lim
n→∞

f(2nx)

8n
∀x ∈ A.

Letting n → ∞ in (4.4), we get the formula (4.2) for all x ∈ A.

The rest of the proof is similar to that of Theorem 3. �
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Theorem 6. Let f : A → B be a mapping satisfying the inequality (4.1) for all

x, y ∈ A where µ and s are constants with, µ, s > 0 and s > 3
2 . Then the limit

C(x) = lim
n→∞

8n f
( x

2n

)
exists for all x ∈ A and C : A → B is the unique Euler-Lagrange-Jensen type cubic

mapping such that

∥f(x)− C(x)∥B ≤ 8µ

ab(22s − 8)
∥x∥2sA

for all x ∈ A.

Proof. Replace x by x
2 in (4.3). Then the proof is similar to that of Theorem 5. �

5. Conclusion

In this paper, we have introduced a new generalized (a, b)-cubic Euler-Lagrange-

Jensen functional equation and obtained its general solution. Furthermore, we have

proved the Hyers-Ulam of the generalized (a, b)-cubic Euler-Lagrange-Jensen func-

tional equation in orthogonality normed spaces.
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