References
- Affdl, J.H. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
- Agrawal, R., Peng, B., Gdoutos, E.E. and Espinosa, H.D. (2008), "Elasticity size effects in ZnO nanowires-A combined experimental-computational approach", Nano Lett., 8(11), 3668-3674. https://doi.org/10.1021/nl801724b.
- Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3.
- Aifantis, K.E. and Willis, J.R. (2005), "The role of interfaces in enhancing the yield strength of composites and polycrystals", J. Mech. Phys. Solid., 53(5), 1047-1070. https://doi.org/10.1016/j.jmps.2004.12.003.
- Al-Furjan M., Habibi M., Ghabussi A., Safarpour H., Safarpour M., and Tounsi A. (2021), "Nonpolynomial framework for stress and strain response of the fg-gplrc disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
- Anirudh B., Ganapathi M., Anant C., and Polit O. (2019), "A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling", Compos. Struct., 222, 110899. https://doi.org/10.1016/j.compstruct.2019.110899.
- Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B: Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092.
- Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412.
- Barbaros, I., Yang, Y., Safaei, B., Yang, Z., Qin, Z. and Asmael, M. (2022), "State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials", Nanotechnol. Rev., 11(1), 321-371. https://doi.org/10.1515/ntrev-2022-0017.
- Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
- Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
- Daikh, A. A., Drai, A., Bensaid, I., Houari, M. S. A. and Tounsi, A. (2021b), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandwich Struct Mater., 23(6), 2217-2244. https://doi.org/10.1177/1099636220909790.
- Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021d), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
- Daikh, A. A., Houari, M. S. A., Belarbi, M. O., Chakraverty, S. and Eltaher, M. A. (2021c), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8.
- Daikh, A. A., Houari, M. S. A., Belarbi, M. O., Mohamed, S. A. and Eltaher, M. A. (2021a), "Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory", Defense Technol., https://doi.org/10.1016/j.dt.2021.09.011.
- Ebrahimi F., Seyfi A., Dabbagh A., and Tornabene F. (07 2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71, 99-107. https://doi.org/10.12989/sem.2019.71.1.099.
- Ekinci K. L. and Roukes M. L. (2005), "Nanoelectromechanical systems", Rev. Sci. Instruments, 76(6), 061101. https://doi.org/10.1063/1.1927327.
- Eringen A. C. and Edelen D. G. B., (1972), "On nonlocal elasticity", J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Eringen A. C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen A. (1972), "Nonlocal polar elastic continua", J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Fattahi A. M., Safaei B., Qin Z., and Chu F. (01 2021), "Experimental studies on elastic properties of high density polyethylene multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38, 177-187. https://doi.org/10.12989/scs.2021.38.2.177.
- Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W. (1994), "Strain gradient plasticity: theory and experiment", Acta Metallurgica et materialia, 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9.
- Gao W., Qin Z., and Chu F. (2020), "Wave propagation in functionally graded porous plates reinforced with graphene platelets", Aerosp. Sci. Technol., 102, 105860. https://doi.org/10.1016/j.ast.2020.105860.
- Heidari F., Taheri K., Sheybani M., Janghorban M., and Tounsi A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38, 533-545. https://doi.org/10.12989/scs.2021.38.5.533.
- Heydarpour Y., Malekzadeh P., Dimitri R., and Tornabene F. (2020), "Thermoelastic analysis of rotatingmultilayer fg-gplrc truncated conical shells based on a coupled tdqm-nurbs scheme", Compos. Struct., 235, 111707. https://doi.org/10.1016/j.compstruct.2019.111707.
- Houari M. S. A., Bessaim A., Bernard F., Tounsi A., and Mahmoud S. R. (2018), "Buckling analysis of new quasi-3d fg nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
- Jouneghani F. Z., Dimitri R., and Tornabene F. (2018), "Structural response of porous fg nanobeams under hygro-thermo-mechanical loadings", Compos. Part B Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06 .023.
- Karami B., Shahsavari D., Janghorban M., and Tounsi A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
- Karami, B. and Shahsavari, D. (2020b), "On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets", Comput. Methods Appl. Mech. Eng., 359, 112767. https://doi.org/10.1016/j.cma.2019.112767.
- Karami, B., Janghorban, M. and Rabczuk, T. (2020c), "Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory", Compos. Part B Eng., 182, 107622. https://doi.org/10.1016/j.compositesb.2019.107622.
- Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory", J. Eng. Sci., 144, 103143. https://doi.org/10.1016/j.ijengsci.2019.103143.
- Karami, B., Shahsavari, D., Ordookhani, A., Gheisari, P., Li, L. and Eyvazian, A. (2020a), "Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions", Steel Compos. Struct., 36(6), 689-702. https://doi.org/10.12989/scs.2020.36.6.689.
- Kitipornchai S., Chen D. and Yang J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Kumar, D. and Srivastava, A. (08 2016), "Elastic properties of cnt-and graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., 21, 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085.
- Lam, D., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/s0022-5096(03)00053-x.
- Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018), "Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
- Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E Lowdimensional Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028.
- Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Liu, F., Ming, P. and Li, J. (2007), "Ab initio calculation of ideal strength and phonon instability of graphene under tension", Phys. Rev. B, 76, 064120. https://doi.org/10.1103/PhysRevB.76.064120.
- Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006.
- Merzouki, T., Houari M.S.A., Haboussi, M., Bessaim, A. and Ganapathi, M. (2020), "Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-020-01156-y.
- Merzouki, T., Ahmed, H.M.S., Bessaim, A., Haboussi, M., Dimitri, R. and Tornabene, F. (2022), "Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory", Math. Mech. Solids, 27(1), 66-92. https://doi.org/10.1177/10812865211011759.
- Mindlin, R. (1965), "Second gradient of strain and surface-tension in linear elasticity", J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
- Mindlin, R.D. (1963), "Microstructure in linear elasticity", Technical report AD0424156; Office of Naval Research, Defense Technical Information Center, USA. https://doi.org/10.21236/ad0424156.
- Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20, 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
- Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded euler-bernoulli nano-beams using integral form of Eringen's non-local elasticity theory", Struct. Eng. Mech., 67, 417-425. https://doi.org/10.12989/sem.2018.67.4.417.
- Nguyen, Q.H., Nguyen, L.B., Nguyen, H.B. and Nguyen-Xuan, H. (2020), "A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of fg porous plates reinforced by graphene platelets", Compos. Struct., 245, 112321. https://doi.org/10.1016/j.compstruct.2020.112321.
- Nguyen, T., Kim, N.I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially fg nonlocal beams", Steel Compos. Struct., 17, 641-665. https://doi.org/10.12989/scs.2014.17.5.641.
- Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D. and Beskos, D.E. (2003), "Bending and stability analysis of gradient elastic beams", J. Solids Struct., 40(2), 385-400. https://doi.org/10.1016/s0020-7683(02)00522-x.
- Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.
- Pollien, A., Conde, Y., Pambaguian, L. and Mortensen, A. (2005), "Graded open-cell aluminium foam core sandwich beams", Mater. Sci. Eng. A, 404(1), 9-18. https://doi.org/10.1016/j.msea.2005.05.096.
- Rafiee, M.A., Rafiee, J., Wang, Z., Song H., Yu Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
- Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
- Roberts A. and Garboczi E. (2001), "Elastic moduli of model random three-dimensional closed-cell cellular solids", Acta Materialia, 49(2), 189-197. https://doi.org/10.1016/s1359-6454(00)00314-1.
- Sahmani S., Aghdam M.M. and Rabczuk T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082.
- Saidi A.R., Bahaadini R. and Majidi-Mozafari K. (2019), "On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading", Compos. Part B Eng., 164, 778-799. https://doi.org/10.1016/j.compositesb.2019.01.074.
- Shafiei N., Mousavi A. and Ghadiri M. (2016), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Walled Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Soleimani A., Dastani K., Hadi A. and Naei M. (03 2019), "Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., 30, 517-534. https://doi.org/10.12989/scs.2019.30.6.517.
- Stolken, J.S. and Evans, A.G. (1998), "A microbend test method for measuring the plasticity length scale", Acta Materialia., 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0.
- Tao C. and Dai T. (2021), "Isogeometric analysis for postbuckling of sandwich cylindrical shell panels with graphene platelet reinforced functionally graded porous core", Compos. Struct., 260, 113258. https://doi.org/10.1016/j.compstruct.2020.113258.
- Wang Y., Xie K., Fu T. and Zhang W. (2021), "A third order shear deformable model and its applications for nonlinear dynamic response of graphene oxides reinforced curved beams resting on visco-elastic foundation and subjected to moving loads", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01238-x.
- Wu D., Liu A., Huang Y., Huang Y., Pi Y. and Gao W. (2018), Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.
- Yang F., Chong A., Lam D. and Tong P. (2002), "Couple stress based strain gradient theory for elasticity", J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/s0020-7683(02)00152-x.
- Yas M.H. and Rahimi S. (2020), "Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using generalized differential quadrature method", Aerosp. Sci. Technol., 107, 106261. https://doi.org/10.1016/j.ast.2020.106261.
- Zhou Z., Ni Y., Tong Z., Zhu S., Sun J. and Xu X. (2019), "Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells", J. Mech. Sci., 151, 537-550. https://doi.org/10.1016/j.ijmecsci.2018.12.012.