References
- Abd-Alla, A.M. and Yahya, G.A. (2012), "Thermal stresses in an infinite circular cylinder subjected to rotation", Appl. Math. Mech., 33(8), 1059-1078. https://doi.org/10.1007/s10483-012-1605-7.
- Abd-Alla, A.M., Abo-Dahab, S.M. and Kilany, A.A. (2020), "Effect of several fields on a generalized thermoelastic medium with voids in the context of Lord-Shulman or dual-phase-lag models", Mech. Bas. Des. Struct. Mach., 1-24. https://doi.org/10.1080/15397734.2020.1823852.
- Abo-Dahab, S.M. (2015), "Magnetic field effect on three plane waves propagation at interface between solid-liquid media placed under initial stress in the context of GL Model", Appl. Math. Inform. Sci., 9(6), 3119-3131. http://doi.org/10.12785/amis/090641.
- Abo-Dahab, S.M. (2016), "Electromagnetic field and rotational effects on S-waves propagation in a non-homogeneous anisotropic incompressible medium under initial stress and gravity field", Appl. Math. Inform. Sci., 10(1), 363-376. http://doi.org/10.18576/amis/100139.
- Abo-Dahab, S.M. and Abbas, I.A. (2011), "LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinite long annular cylinder with variable thermal conductivity", Appl. Math. Model., 35(8), 3759-3769. https://doi.org/10.1016/j.apm.2011.02.028.
- Abo-Dahab, S.M., Abd-Alla, A.M. and Kilany, A.A. (2020), "Electromagnetic field in fiber reinforced micropolar thermoelastic medium using four models", J. Ocean Eng. Sci., 5, 230-248. https://doi.org/10.1016/j.joes.2019.12.003.
- Abo-Dahab, S.M., Hussein, N.S. and Alshehri, H.A. (2016), "On the rotation and axial magnetic field effects of a non-Homogeneous composite infinite cylinder of orthotropic material", Appl. Math. Inform. Sci., 10(2), 581-605. https://doi.org/10.18576/amis/100219.
- Abo-Dahab, S.M., Kilany, A.A., Allam, M.N M., Mohamed, R.A. and Rida S.Z. (2020), "Influence of several fields on Rayleigh waves propagation in a fiber-reinforced orthotropic half-space material under four thermoelastic models", Wave. Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2020.1849865.
- Abouelregal, A.E. and Abo-Dahab, S.M. (2015), "Study of the dual phase lag model of thermoelasticity fora half-space problem with rigidly fixed surface in the presence of a thermal shock", J. Comput. Theor. Nanosci., 12(1), 38-45. https://doi.org/10.1166/jctn.2015.3695.
- Aouadi, M. (2006), "Generalized thermo-piezoelectric problems with temperatue dependent properties", Int. J. Solid. Struct., 43(21), 6347-6358. https://doi.org/10.1016/j.ijsolstr.2005.09.003.
- Bayones, F.S., Abo-Dahab, S.M., Abd-Alla, A.M., Elhag S.H., Kilany, A.A. and Elsagheer M. (2021), "Initial stress and gravity on P-wave reflection from electromagneto-thermomicrostretch medium in the context of three-phase lag model", Complexity, 2021, Article ID 5560900. https://doi.org/10.1155/2021/5560900.
- Bayones, F.S., Kilany, A.A., Abo-Dahab, S.M. and Abd-Alla, A.M. (2022), "Electromagnentic filed and rotation for fractional derivative order calculus with temperature-dependent on reflection of longitudinal wave under initial stress and three-phase-lag model", Wave. Random Complex Media, 1-21. https://doi.org/10.1080/17455030.2022.2036385.
- Bayones, F.S., Kilany, A.A., Abouelregal, A.E. and Abo-Dahab, S.M. (2020), "A rotational gravitational stressed and voids effect on an electromagnetic photothermal semiconductor medium under three models of thermoelasticity", Mech. Bas. Des. Struct. Mach., 1-27. https://doi.org/10.1080/15397734.2020.1863229.
- Bouslimi, J., Omri, M., Kilany, A.A., Abo-Dahab, S.M. and Hatem, A. (2021), "Mathematical model on a photothermal and voids in a semiconductor medium in the context of Lord-Shulman theory", Wave. Random Complex Media, 1-18. https://doi.org/10.1080/17455030.2021.2010835.
- Das, J.K. and Nahid, M.A.I. (2015), "Electrical properties of thermal evaporated Bismuth Telluride thin films", Int. J. Thin Film Sci. Technol., 4, 13-16. https://doi.org/10.12785/ijtfst/040103.
- Ezzat, M.A., El-Karamany, A.S. and Samaan, A.A. (2004), "The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity with thermal relaxation", Appl. Math. Comput., 147(1), 169-189. https://doi.org/10.1016/S0096-3003(02)00660-4.
- Hashmat, A., Jahangir, A. and Aftab, K. (2020), "Reflection of thermo-elastic wave in semiconductor nanostructures nonlocal porous medium", J. Central South Uni., 27, 3188-3201. https://doi.org/10.1007/s11771-020-4472-1.
- Iesan, D. and Quintanilla R. (2000), "On a theory of thermoelasticity with micro-temperatures", J. Therm. Stress., 23(3), 199-215. https://doi.org/10.1080/014957300280407.
- Khalil, E.M., Abo-Dahab, S.M. and Kilany, A.A. (2021), "Electromagnetic field and initial stress on a photothermal semiconducting voids medium under thermoelasticity theories", Math. Meth. Appl. Sci., 44, 7778-7798. https://doi.org/10.1002/mma.6942.
- Liu, Z., Ramon, Q. and Yang, W. (2021), "Dual phase lag heat conduciton with microtemperatures", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 101(12), e202000167. https://doi.org/10.1002/zamm.202000167.
- Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Cont. Mech. Thermodyn., 28, 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
- Marin, M., Rehman, E. and Adina C. (2017), "On the solution of Saint-Venant's problem for elastic dipolar bodies with voids", Carpath. J., 33(2), 2019-232.
- Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863-873. https://doi.org/10.3390/sym11070863.
- Mondal, S., Mallik, S.H. and Kanoria, M. (2014), "Fractional order two-temperature dual-phase-lag thermo-elasticity with variable thermal conductivity", Int. Schol. Res. Notic., 7(2), 1-13. https://doi.org/10.1155/2014/646049.
- Parveen, L. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 37(2), 245-253. https://doi.org/10.12989/sem.2019.70.2.245.
- Prasad, R., Kumar, R. and Mukhopadhyay, S. (2010), "Propagation of harmonic plane waves under thermo-elasticity with dual phase lags", Int. J. Eng. Sci., 48(12), 2028-2043. https://doi.org/10.1016/j.ijengsci.2010.04.011.
- Quintanilla, R. and Rache, R. (2006), "A note on stability in dual phase lag heat conduction", Int. J. Heat Mass Transf., 49(7), 1209-1213. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.016.
- Singh, B. (2013), "Wave propagation in dual-phase-lag anisotropic thermo-elasticity", Continuum Mech. Thermodyn., 25(5), 675-683. https://doi.org/10.1007/s00161-012-0261-x.
- Steeb, H., Singh, J. and Tomar, S.K. (2013), "Time harmonic waves in thermoelastic materials with micro temperatures", Mech. Res. Commun., 48(1), 8-13. https://doi.org/10.1016/j.mechrescom.2012.11.006.
- Tzou, D.Y. (1995), "A unified filed approach for heat conduction from macro to micro scales", J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
- Wang, Y., Liu, D., Wang, Q. and Zhou, J. (2016), "Asymptotic solutions for generalized thermoelasticity with variable thermal material properties", Arch. Mech., 68(3), 181-202.
- Youssef, H.M. (2005), "Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity", Appl. Math. Mech., 26(4), 470-475. https://doi.org/10.1007/BF02465386.
- Youssef, H.M. (2005), "State-Space approach on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to Ramp-type heating", Can. Appl. Math. Quart., 13(4), 369-390.
- Youssef, H.M. and Abbas, I.A. (2007), "Thermal shock problem of generalized thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", Comput. Meth. Sci. Technol., 13(2), 95-100. https://doi.org/10.12921/cmst.2007.13.02.95-100.
- Zenkou, A.M. (2006), "Thermoelastic solutions for annular disks with arbitrary variable thickness", Struct. Eng. Mech., 24(5), 515-528. https://doi.org/10.12989/sem.2006.24.5.515.