DOI QR코드

DOI QR Code

Discrete element modeling of strip footing on geogrid-reinforced soil

  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Tabaroei, Abdollah (Department of Civil Engineering, Eshragh Institute of Higher Education) ;
  • Asgari, Kaveh (Department of Mining Engineering, Shahid Bahonar University of Kerman)
  • Received : 2021.12.17
  • Accepted : 2022.03.09
  • Published : 2022.05.25

Abstract

In this paper, unreinforced and geogrid-reinforced soil foundations were modeled by discrete element method and this performed under surface strip footing loads. The effects of horizontal position of geogrid, vertical position, thickness, number, confining pressure have been investigated on the footing settlement and propagation of tensile force along the geogrids. Also, interaction between rectangular tunnel and strip footing with and without presence of geogrid layer has been analyzed. Experimental results of the literature were used to validation of relationships between the numerically achieved footing pressure-settlement for foundations of reinforced and unreinforced soil. Models and micro input parameters which used in the numerical modelling of reinforced and unreinforced soil tunnel were similar to parameters which were used in soil foundations. Model dimension was 1000 mm* 600 mm. Normal and shear stiffness of soils were 5*105 and 2.5 *105 N/m, respectively. Normal and shear stiffness of geogrid were 1*109 and 1*109 N/m, respectively. Loading rate was 0.001 mm/sec. Micro input parameters used in numerical simulation gain by try and error. In addition of the quantitative tensile force propagation along the geogrids, the footing settlements were visualized. Due to collaboration of three layers of geogrid reinforcements the bearing capacity of the reinforced soil tunnel was greatly improved. In such practical reinforced soil formations, the qualitative displacement propagations of soil particles in the soil tunnel and the quantitative vertical displacement propagations along the soil layers/geogrids represented the geogrid reinforcing impacts too.

Keywords

References

  1. Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
  2. Allen, T.M. and Bathurst, R.J. (2018), "Application of the simplified stiff-ness method to design of reinforced soil walls", J. Geotech. Geoenviron. Eng., 144(5), 04018024. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001874.
  3. Bathurst, R.J. and Javankhoshdel, S. (2017a), "Influence of model type, biasand input parameter variability on reliability analysis for simple limitstates in soil-structure interaction problems", Georisk, 11(1). 42-54. https://doi.org/10.1080/17499518.2016.1154160
  4. Bathurst, R.J., Javankhoshdel, S. and Allen, T.M. (2017b), "LRFD calibra-tion of simple soil-structure limit states considering method bias anddesign parameter variability", J. Geotech. Geoenviron. Eng., 143(9), 04017053. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001735.
  5. Bathurst, R.J., Lin, P. and Allen, T.M. (2019), "Reliability-based designof internal limit states for mechanically stabilized earth walls usinggeosynthetic reinforcement", Can Geotech. J., 56(6), 774-788. https://doi.org/10.1139/cgj-2018-0074.
  6. Biabani, M.M., Ngo, N.T. and Indraratna B. (2016), "Performance evaluation of railway subballast stabilised with geocell based on pull-out testing", Geotext. Geomembranes, 44(4), 579-591. https://doi.org/10.1016/j.geotexmem.2016.03.006
  7. Brown, S.F., Kwan, J. and Thom, N.H. (2007), "Identifying the key parameters that influence geogrid reinforcement of railway ballast", Geotext. Geomembranes, 25(6), 326-335. https://doi.org/10.1016/j.geotexmem.2007.06.003.
  8. Chen, C., Mcdowell, G. and Rui, R. (2018), "Discrete element modelling of geogrids with square and triangular apertures", Geomech. Eng., 16(5), 495-501. http://doi.org/10.12989/gae.2018.16.5.495.
  9. Chen, Q. (2007), "An Experimental Study on Characteristics and Behavior of Reinforced Soil Foundation", Ph.D. thesis. Louisiana State University, USA.
  10. Choudhary, A.K. and Krishna, A.M. (2016), "Experimental investigation of interface behaviour of different types of granular soil/geosynthetics", Int. J. Geosynth. Ground Eng., 2(1) 11. https://doi.org/10.1007/s40891-016-0044-8.
  11. Das, B.M., Shin, E.C. and Omar, M.T. (1994), "The bearing capacity of surface strip foundations on geogrid-reinforced sand clay- a comparative study", Geotech. Geol. Eng., 12(1), 1-14. https://doi.org/10.1007/BF00425933.
  12. Demir, A., Yildiz, A., Laman, M. and Ornek, M. (2014), "Experimental and numerical analyses of circular footing on geogrid-reinforced granular fill underlain by soft clay", Acta Geotech., 9(4), 711-723. https://doi.org/10.1007/s11440-013-0207-x.
  13. Dong, T., Cao, P. and Lin, Q. (2020), "Size effect on mechanical properties of rock-Like materials with three joints", Geotech. Geol. Eng., 38(11), 66-77. https://doi.org/10.1007/s43452-020-00027-z.
  14. Dong, Y.L., Han, J. and Bai, X.H. (2011), "Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures", Geotext. Geomembranes, 29(2), 83-91. https://doi.org/10.1016/j.geotexmem.2010.10.007.
  15. Esmaeili, M., Zakeri, J.A. and Babaei, M. (2017), "Laboratory and field investigation of the effect of geogrid-reinforced ballast on railway track lateral resistance", Geotext. Geomembranes, 45(2), 23-33. https://doi.org/10.1016/j.geotexmem.2016.11.003.
  16. Gao, G. and Meguid, M.A. (2018), "Effect of particle shape on the response of geogrid-reinforced systems: insights from 3D discrete element analysis", Geotext. Geomembranes, 46(1), 685-698. https://doi.org/10.1016/j.geotexmem.2018.07.001.
  17. Gu, F., Luo, X. and Luo, R. (2016), "Numerical modeling of geogrid-reinforced flexible pavement and corresponding validation using large-scale tank test", Constr. Build. Mater., 122, 214-230. https://doi.org/10.1016/j.conbuildmat.2016.06.081.
  18. Gutierrez, M., Muftah, A. (2015), "Micro and Macro Behavior of Granular Materials in Simple Shear", Crc Press-Taylor & Francis Group, Boca Raton., 91-96. DOI: 10.1201/b17395-15
  19. Han, B.Y., Ling, J.M. and Shu, X. (2018), "Laboratory investigation of particle size effects on the shear behavior of aggregate-geogrid interface", Constr. Build. Mater., 158, 1015-1025. https://doi.org/10.1016/j.conbuildmat.2017.10.045.
  20. Huang, C.C. and Tatsuoka, F. (1990), "Bearing capacity of reinforced horizontal sandy ground", Geotext. Geomembranes, 9(1), 51-82. https://doi.org/10.1016/0266-1144(90)90005-W.
  21. Indraratna, B. and Rujikiatkamjorn, C. (2011), "Behavior of geogridreinforced ballast under various levels of fouling", Geotext. Geomembranes, 29(3), 313-322. https://doi.org/10.1016/j.geotexmem.2011.01.015.
  22. Indraratna, B., Hussaini, S.K.K. and Vinod, J.S. (2012), "On The Shear Behavior of Ballast-Geosynthetic Interfaces", Geotech. Test. J., 35(2), 305-312. https://doi.org/10.1520/GTJ103317.
  23. Indraratna, B., Hussaini, S.K.K. and Vinod, J.S. (2013), "The lateral displacement response of geogrid-reinforced ballast under cyclic loading", Geotext. Geomembranes, 39, 20-29. https://doi.org/10.1016/j.geotexmem.2013.07.007.
  24. Khing, K.H., Das, B.M., Puri, V.K., Cook, E.E. and Yen, S.C. (1993), "The bearing-capacity of a strip foundation on geogrid-reinforced sand", Geotext. Geomembranes, 12(4), 351-361. https://doi.org/10.1016/0266-1144(93)90009-D.
  25. Kim, D. (2020), "Determination of effective parameters on surface settlement during shield TBM", Geomech. Eng., 21(2), 56-72. https://doi.org/10.12989/gae.2020.21.2.153.
  26. Lin Q. and Cao, P. (2021b), "Crack coalescence in rock-like specimens with two dissimilar layers and pre-existing double parallel joints under uniaxial compression", Int. J. Rock Mech. Min. Sci., 139(8), 98-105. https://doi.org/10.1016/j.ijrmms.2021.104621.
  27. Lin, P. and Bathurst, R.J. (2018a), "Influence of cross-correlation betweennominal load and resistance on reliability-based design for simple linearsoil-structure limit states", Can. Geotech. J., 55, (2), 279-295. https://doi.org/10.1139/cgj-2017-0012.
  28. Lin, P. and Bathurst, R.J. (2018b), "Reliability-based internal limit statesanalysis and design of soil nails using different load and resistancemodels", J. Geotech. Geoenviron. Eng., 144(5), 04018022. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001862.
  29. Lin, Q. and Cao, P. (2020), "Strength and failure characteristics of jointed rock mass with double", Theor. Appl. Fract. Mech., 109(7), 45-61. https://doi.org/10.1016/j.tafmec.2020.102692.
  30. Lin, Q. and Cao, P. (2021a), "Mechanical behavior of a jointed rock mass with a circular hole under compression-shear loading: Experimental and numerical studies", Theor. Appl. Fract. Mech., 114(4), 45-67. https://doi.org/10.1016/j.tafmec.2021.102998.
  31. Lu, M. a nd Mcdowell, G.R. (2006), "The importance of modelling ballast particle shape in the discrete element method", Granular. Matter., 9(1-2) 69-80. https://doi.org/10.1007/s10035-006-0021-3.
  32. Luat, N. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils". Geomech. Eng., 20(5), 33-45. http://doi.org/10.12989/gae.2020.20.5.385.
  33. Mcdowell, G.R. and Harireche, O. (2002), "Discrete element modelling of soil particle fracture", Geotechnique, 52(2), 131-135. https://doi.org/10.1680/geot.2002.52.2.131.
  34. Mcdowell, G.R., Harireche, O. and Konietzky, H. (2006), "Discrete element modelling of geogrid-reinforced aggregates". Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 159(1), 35-48. https://doi.org/10.1680/geng.2006.159.1.35.
  35. Miao, C.X., Zheng, J.J. and Zhang, R.J. (2017), "Visualization of pullout behaviour of geogrid in sand with emphasis on size effect of protrusive junctions", J. Central South Univ., 24(9), 2121-2133. https://doi.org/10.1007/s11771-017-3621-7.
  36. Miao, C.X., Zheng, J.J., Zhang, R.J. and Cui, L. (2017), "DEM modeling of pullout behavior of geogrid reinforced ballast: the effect of particle shape", Comput. Geotech., 81, 249-261. https://doi.org/10.1016/j.compgeo.2016.08.028.
  37. Moradi, G.H. (2019), "Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method", Geomech. Eng., 18(3), 123-138. https://doi.org/10.12989/gae.2019.18.3.315.
  38. Ngo, N.T., Indraratna, B. and Rujikiatkamjorn, C. (2014), "DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal", Comput. Geotech. 55, 224-231. https://doi.org/10.1016/j.compgeo.2013.09.008.
  39. Ngo, N.T., Indraratna, B. and Rujikiatkamjorn, C. (2016), "Modelling geogrid-reinforced railway ballast using the discrete element method", Transp. Geotech., 8, 86-102. https://doi.org/10.1016/j.trgeo.2016.04.005.
  40. Ngo, N.T., Indraratna, B. and Rujikiatkamjorn, C. (2017), "A study of the geogrid-subballast interface via experimental evaluation and discrete element modelling", Granular Matter., 19(3), 54. https://doi.org/10.1007/s10035-017-0743-4.
  41. Nimbalkar, S., Neville, T. and Indraratna, B. (2014), "Performance assessment of reinforced ballasted rail track", Proceedings of the ICE - Ground Improvement, 167(1), 24-34. https://doi.org/10.1680/grim.13.00018.
  42. Oner E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
  43. Qian, Y., Tutumluer, E. and Mishra, D. (2018), "Triaxial testing and discrete-element modelling of geogrid-stabilised rail ballast", Proceedings of the Institution of Civil Engineers-Ground Improvement, 171(4), 223-231. https://doi.org/10.1680/jgrim.17.00068.
  44. Rezaei, A.H. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 89-99. https://doi.org/10.12989/gae.2019.19.2.153.
  45. Sweta, K. and Hussaini, S.K.K. (2019), "Performance of the geogrid-reinforced railroad ballast in direct shear mode". Proceedings of the Institution of Civil Engineers. Ground Improvement, 172(4), 244-256. https://doi.org/10.1680/jgrim.18.00107.
  46. Teixeira, S.H.C., Bueno, B.S. and Zornberg, J.G. (2007), "Pullout resistance of individual longitudinal and transverse geogrid ribs", J. Geotech. Geoenviron. Eng., 133(1), 37-50. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(37).
  47. Thornton, C. (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 50(1), 43-53. https://doi.org/10.1680/geot.2000.50.1.43.
  48. Tran, V.D.H., Meguid, M.A. and Chouinard, L.E. (2015), "Three-dimensional analysis of geogrid- reinforced soil using a finite-discrete element framework", Int. J. Geomech., 15(4), 04014066. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000410.
  49. Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563 https://doi.org/10.12989/cac.2020.25.6.551.
  50. Wang, Z. and Jacobs, F. (2020), "Visualisation and quantification of geogrid reinforcing effects under strip footing loads using discrete element method", Geotext. Geomembranes, 48, 62-70. https://doi.org/10.1016/j.geotexmem.2019.103505.
  51. Wang, Z., Jacobs, F. and Ziegler, M. (2014), "Visualization of load transfer behaviour between geogrid and sand using PFC2D", Geotext. Geomembranes, 42(2), 83-90. https://doi.org/10.1016/j.geotexmem.2014.01.001.
  52. Wang, Z., Jacobs, F. and Ziegler, M. (2016), "Experimental and DEM investigation of geogridsoil interaction under pullout loads". Geotext. Geomembranes, 44(3), 230-246. https://doi.org/10.1016/j.geotexmem.2015.11.001.
  53. Yang, G. and Liu, H. (2012), "Geogrid-reinforced lime-treated cohesive soil retaining wall: case study and implications", Geotext. Geomembranes, 35, 112-118. https://doi.org/10.1016/j.geotexmem.2012.09.001.
  54. Yang, X.L. (2018), "Catastrophe analysis of active-passive mechanisms for shallow tunnels with settlement", Geomech. Eng., 15(1), 99-111. https://doi.org/10.12989/gae.2018.15.1.621.
  55. Yaylaci M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
  56. Yaylaci M., Adiyaman E., Oner E. and Birinci A., (2021a), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
  57. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143,
  58. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A., (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 23(3), 21-34. https://doi.org/10.12989/sem.2020.76.3.325.
  59. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021b), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 15(3), 77-88. https://doi.org/10.1016/j.mechmat.2020.103730.
  60. Zhang, J., Zheng, J.J. and Chen, B.G. (2013), "Coupled mechanical and hydraulic modeling of a geosynthetic-reinforced and pile-supported embankment", Comput. Geotech., 52, 28-37. https://doi.org/10.1016/j.compgeo.2013.03.003.
  61. Zhao, X. and Evans, T.M. (2009), "Discrete simulations of laboratory loading conditions", Int. J. Geomech., 9(4), 169-178. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(169).