DOI QR코드

DOI QR Code

Origin and Source Appointment of Sedimentary Organic Matter in Marine Fish Cage Farms Using Carbon and Nitrogen Stable Isotopes

탄소 및 질소 안정동위원소를 활용한 어류 가두리 양식장 내 퇴적 유기물의 기원 및 기여도 평가

  • Young-Shin Go (National Institute of Fisheries Science, Marine Environment Research Division) ;
  • Dae-In Lee (National Institute of Fisheries Science, Marine Environment Research Division) ;
  • Chung Sook Kim (National Institute of Fisheries Science, Marine Environment Research Division) ;
  • Bo-Ram Sim (Fisheries Resources and Environment Division, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Hyung Chul Kim (National Institute of Fisheries Science, Research and Development Planning Division) ;
  • Won-Chan Lee (National Institute of Fisheries Science, Marine Environment Research Division) ;
  • Dong-Hun Lee (National Institute of Fisheries Science, Marine Environment Research Division)
  • 고영신 (국립수산과학원 어장환경과) ;
  • 이대인 (국립수산과학원 어장환경과) ;
  • 김청숙 (국립수산과학원 어장환경과) ;
  • 심보람 (서해수산연구소 자원환경과) ;
  • 김형철 (국립수산과학원 연구기획과) ;
  • 이원찬 (국립수산과학원 어장환경과) ;
  • 이동헌 (국립수산과학원 어장환경과)
  • Received : 2021.11.17
  • Accepted : 2021.12.13
  • Published : 2022.06.30

Abstract

We investigated physicochemical properties and isotopic compositions of organic matter (δ13CTOC and δ 15NTN) in the old fish farming (OFF) site after the cessation of aquaculture farming. Based on this approach, our objective is to determine the organic matter origin and their relative contributions preserved at sediments of fish farming. Temporal and spatial distribution of particulate and sinking organic matter(OFF sites: 2.0 to 3.3 mg L-1 for particulate matter concentration, 18.8 to 246.6 g m-2 day-1 for sinking organic matter rate, control sites: 2.0 to 3.5 mg L-1 for particulate matter concentration, 25.5 to 129.4 g m-2 day-1 for sinking organic matter rate) between both sites showed significant difference along seasonal precipitations. In contrast to variations of δ13CTOC and δ15NTN values at water columns, these isotopic compositions (OFF sites: -21.5‰ to -20.4‰ for δ13 CTOC, 6.0‰ to 7.6‰ for δ15NTN, control sites: -21.6‰ to -21.0‰ for δ13CTOC, 6.6‰ to 8.0‰ for δ15NTN) investigated at sediments have distinctive isotopic patterns(p<0.05) for seawater-derived nitrogen sources, indicating the increased input of aquaculture-derived sources (e.g., fish fecal). With respect to past fish farming activities, representative sources(e.g., fish fecal and algae) between both sites showed significant difference (p<0.05), confirming predominant contribution (55.9±4.6%) of fish fecal within OFF sites. Thus, our results may determine specific controlling factor for sustainable use of fish farming sites by estimating the discriminative contributions of organic matter between both sites.

본 연구에서는 어류 양식장 퇴적 유기물의 기원 및 기여도 평가를 위해 어류(숭어) 가두리 양식장이 이동된 후 수층 및 퇴적물 내 물리/화학적 인자들의 변화와 함께 안정 동위원소 비의 특성을 조사했다. 이를 토대로 과거 양식장 퇴적물 내 축적된 유기물의 거동을 구체적으로 파악함으로써 효과적인 어장환경평가 기법을 검토하였다. 연구정점(OFF 및 control)에서 입자성 및 침강물질은 정점 간 차이보다는 계절적 강수량 변동에 따라 차별적 분포를 보였다. 하지만 퇴적물 내 분석된 δ15N 결과는 수층 기원 질소원과는 유의한 차이를 보였으며, 과거 외부기원의 유기물 (예: 어류 배설물)의 다량 유입이 주된 요인이라 판단된다. 실제로 과거 어류 가두리 양식활동으로 인해 OFF 정점 내 어류 배설물의 우점적 기여(>50%)를 확인할 수 있었다. 따라서 본 연구정점 내 분해되지 않은 어장 양식기인 유기물의 농도가 높은 수준으로 존재할 것이라 판단되며, 어장 회복력의 체계적인 진단을 위한 중요한 고려요인이라 판단된다.

Keywords

References

  1. Bodineau, L., G. Thoumelin, V. Beghin and M. Wartel. 1998. Tidal time-scale changes in the composition of particulate organic matter within the estuarine turbidity maximum zone in the macrotidal Seine Estuary, France: the use of fatty acid and sterol biomarkers. Estuarine, Coastal and Shelf Science 47(1): 37-49. https://doi.org/10.1006/ecss.1998.0344
  2. Callier, M.D., A.M. Weise, C.W. McKindsey and G. Desrosiers. 2006. Sedimentation rates in a suspended mussel farm (Great-Entry Lagoon, Canada): biodeposit production and dispersion. Marine Ecology Progress Series 322: 129-141. https://doi.org/10.3354/meps322129
  3. Callier, M.D., S. Lefebvre, M.K. Dunagan, M.P. Bataille, J. Coughlan and T.P. Crowe. 2013. Shift in benthic assemblages and organisms' diet at salmon farms: community structure and stable isotope analyses. Marine Ecology Progress Series 483: 153-167. https://doi.org/10.3354/meps10251
  4. Carroll, M.L., S. Cochrane, R. Fieler, R. Velvin and P. White. 2003. Organic enrichment of sediments from salmon farming in Norway: environmental factors, management practices, and monitoring techniques. Aquaculture 226(1-4): 165-180. https://doi.org/10.1016/S0044-8486(03)00475-7
  5. Challouf, R., A. Hamza, M. Mahfoudhi, K. Ghozzi and M.N. Bradai. 2017. Environmental assessment of the impact of cage fish farming on water quality and phytoplankton status in Monastir Bay (eastern coast of Tunisia). Aquaculture International 25(6): 2275-2292. https://doi.org/10.1007/s10499-017-0187-1
  6. Chamberlain, J., T.F. Fernandes, P. Read, T.D. Nickell and I.M. Davies. 2001. Impacts of biodeposits from suspended mussel (Mytilus edulis L.) culture on the surrounding surficial sediments. ICES Journal of Marine Science 58(2): 411-416. https://doi.org/10.1006/jmsc.2000.1037
  7. Choi, A., B. Kim, J.S. Mok, J. Yoo, J.B. Kim, W.C. Lee and J.H Hyun. 2020. Impact of finfish aquaculture on biogeochemical processes in coastal ecosystems and elemental sulfur as a relevant proxy for assessing farming condition. Marine Pollution Bulletin 150: 110635.
  8. Choi, M., H.C. Kim, D.W. Hwang, I.S. Lee, Y.S. Kim, Y.J. Kim and H.G Choi. 2013. Organic enrichment and pollution in surface sediments from shellfish farming in Yeoja Bay and Gangjin Bay, Korea. Korean Journal of Fisheries and Aquatic Sciences 46(4): 424-436. https://doi.org/10.5657/KFAS.2013.0424
  9. Cloern, J.E., E.A. Canuel and D. Harris. 2002, Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnology and Oceanography 47(3): 713-729. https://doi.org/10.4319/lo.2002.47.3.0713
  10. Costanzo, S.D., J. Udy, B. Longstaff and A. Jones. 2005. Using nitrogen stable isotope ratios(±15N) of macroalgae to determine the effectiveness of sewage upgrades: changes in the extent of sewage plumes over four years in Moreton Bay, Australia. Marine Pollution Bulletin 51(1-4): 212-217. https://doi.org/10.1016/j.marpolbul.2004.10.018
  11. Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12(1-2):133-149. https://doi.org/10.1016/0016-7037(57)90024-8
  12. Crawford, C.M., C.K. Macleod and I.M. Mitchell. 2003. Effects of shellfish farming on the benthic environment. Aquaculture 224(1-4): 117-140. https://doi.org/10.1016/S0044-8486(03)00210-2
  13. Dahlback, B. and L.A.H. Gunnarsson. 1981. Sedimentation and sulfate reduction under a mussel culture. Marine Biology 63(3): 269-275. https://doi.org/10.1007/BF00395996
  14. Derrien, M., M.S. Kim, G. Ock, S. Hong, J. Cho, K.H. Shin and J. Hur. 2018. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy. Science of The Total Environment 618: 569-578. https://doi.org/10.1016/j.scitotenv.2017.11.067
  15. Ding, H. and M.Y. Sun. 2005. Biochemical degradation of algal fatty acids in oxic and anoxic sediment-seawater interface systems: effects of structural association and relative roles of aerobic and anaerobic bacteria. Marine Chemistry 93(1): 1-19. https://doi.org/10.1016/j.marchem.2004.04.004
  16. Ehleringer, J.R. and P.W. Rundel. 1989. Stable isotopes: history, units, and instrumentation, p. 1-15. In: Stable isotopes in ecological research. Springer, New York, NY.
  17. Ervik, A., P.K. Hansen, J. Aure, A. Stigebrandt, P. Johannessen and T. Jahnsen. 1997. Regulating the local environmental impact of intensive marine fish farming I. The concept of the MOM system (Modelling-Ongrowing fish farms-Monitoring). Aquaculture 158(1-2): 85-94. https://doi.org/10.1016/S0044-8486(97)00186-5
  18. FAO (Food and Agriculture Organization of the United Nations). 2006. The state of world fisheries and aquacultures, Rome, Italy, 176.
  19. FAO (Food and Agriculture Organization of the United Nations). 2020. The state of world fisheries and aquaculture. Rome, Italy, 1-224.
  20. Fan, X., H. Wei, Y. Yuan and L. Zhao. 2009. Vertical structure of tidal current in a typically coastal raft-culture area. Continental Shelf Research 29(20): 2345-2357. https://doi.org/10.1016/j.csr.2009.10.007
  21. Fry, B. 1988. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnology and Oceanography 33(5): 1182-1190. https://doi.org/10.4319/lo.1988.33.5.1182
  22. Hall, A.E., R.G. Mutters and G.D. Farquhar. 1992. Genotypic and drought-induced differences in carbon isotope discrimination and gas exchange of cowpea. Crop Science 32(1): 1-6. https://doi.org/10.2135/cropsci1992.0011183X003200010002x
  23. Heckathorn, S.A., S.J. McNaughton, J.S. Coleman, R.F. Sage and R.K. Monson. 1999. C4 plants and herbivory. C4 plant biology. pp. 285-312.
  24. Hedges, J.I., R.G. Keil and R. Benner. 1997. What happens to terrestrial organic matter in the ocean?. Organic geochemistry 27(5-6): 195-212. https://doi.org/10.1016/S0146-6380(97)00066-1
  25. Kaehler, S., E.A. Pakhomov, R.M. Kalin and S. Davis. 2006. Trophic importance of kelp-derived suspended particulate matter in a through-flow sub-Antarctic system. Marine Ecology Progress Series 316: 17-22. https://doi.org/10.3354/meps316017
  26. Kang, S., J.H. Kim, D. Kim, H. Song, J.S. Ryu, G. Ock and K.H Shin. 2019. Temporal variation in riverine organic carbon concentrations and fluxes in two contrasting estuary systems: Geum and Seomjin, South Korea. Environment International 133: 105126.
  27. Kim, B.M.N., A. Choi, S.U. An, H.C. Kim, R.H. Jung, W.C. Lee and J.H. Hyun. 2011. Rates of sulfate reduction and iron reduction in the sediment associated with abalone aquaculture in the southern coastal waters of Korea. Ocean and Polar Research 33(4): 435-445. https://doi.org/10.4217/OPR.2011.33.4.435
  28. Kim, M.S., W.S. Lee, K. Suresh Kumar, K.H. Shin, W. Robarge, M. Kim and S.R. Lee. 2016. Effects of HCL pretreatment, drying, and storage on the stable isotope ratios of soil and sediment samples. Rapid Communications in Mass Spectrometry 30(13): 1567-1575. https://doi.org/10.1002/rcm.7600
  29. Kim, M.S., Y.J. Lee, K.G. An, B.H. Kim, S.J. Hwang and K.H. Shin. 2014. Allochthonous organic matter contribution to foodweb in Shingu agricultural researvoir after rainfall period. Korean Journal of Ecology and Environment 47(1): 53-61. https://doi.org/10.11614/KSL.2014.47.1.053
  30. KMI (Korea Maritime Institute). 2019. p. 1-214. In: A Study on Environmental Improvements of Aquaculture Farms. Busan, Korea.
  31. Koh, H.J., S.E. Park, H.K. Cha, D.S. Chang and J.H. Koo. 2013. Coastal eutrophication caused by effluent from aquaculture ponds in Jeju. Journal of the Korean Society of Marine Environment & Safety 19(4): 315-326. https://doi.org/10.7837/kosomes.2013.19.4.315
  32. Kutti, T., A. Ervik and P.K. Hansen. 2007. Effects of organic effluents from a salmon farm on a fjord system. I. Vertical export and dispersal processes. Aquaculture 262(2-4): 367-381. https://doi.org/10.1016/j.aquaculture.2006.10.010
  33. Kwon, J.N., R.H. Jung, Y.S. Kang, K.H. An and W.C. Lee. 2005. Environmental management of marine cage fish farms using numerical modelling. The Sea 10(4): 181-195.
  34. Lee, J.S., K.S. Bahk, B.J. Khang, Y.T. Kim, J.H. Bae, S.S. Kim and O.I. Choi. 2010. The development of a benthic chamber (BelcI) for benthic boundary layer studies. The Sea 15(1): 41-50.
  35. Lee, J.S., S.H. Kim, Y.T. Kim, S.J. Hong, J.H. Han, J.H. Hyun and K.H Shin. 2012. Influence of sea squirt (Halocynthia roretzi) aquaculture on benthic-pelagic coupling in coastal waters: A study of the South Sea in Korea. Estuarine, Coastal and Shelf Science 99: 10-20. https://doi.org/10.1016/j.ecss.2011.11.013
  36. Liu, Y., H. Huang, L. Yan, X. Liu and Z. Zhang. 2016. Influence of suspended kelp culture on seabed sediment composition in Heini Bay, China. Estuarine, Coastal and Shelf Science 181: 39-50. https://doi.org/10.1016/j.ecss.2016.07.017
  37. Mariotti, A. 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303(5919): 685-687. https://doi.org/10.1038/303685a0
  38. Mayor, D.J., A.F. Zuur, M. Solan, G.I. Paton and K. Killham. 2010. Factors affecting benthic impacts at Scottish fish farms. Environmental Science & Technology 44(6): 2079-2084. https://doi.org/10.1021/es903073h
  39. Mayor, D.J., N.B. Gray, G.S. Hattich and B. Thornton. 2017. Detecting the presence of fish farm-derived organic matter at the seafloor using stable isotope analysis of phospholipid fatty acids. Scientific Reports 7(1): 1-10. https://doi.org/10.1038/s41598-016-0028-x
  40. Mazzola, A., S. Mirto, T. La Rosa, M. Fabiano and R. Danovaro. 2000. Fish-farming effects on benthic community structure in coastal sediments: analysis of meiofaunal recovery. ICES Journal of Marine Science 57(5): 1454-1461. https://doi.org/10.1006/jmsc.2000.0904
  41. McGhie, T.K., C.M. Crawford, I.M. Mitchell and D. OBrien. 2000. The degradation of fish-cage waste in sediments during fallowing. Aquaculture 187(3-4): 351-366. https://doi.org/10.1016/S0044-8486(00)00317-3
  42. Navarro, J.M. and R.J. Thompson. 1997. Biodeposition by the horse mussel Modiolus modiolus (Dillwyn) during the spring diatom bloom. Journal of Experimental Marine Biology and Ecology 209(1-2): 1-13. https://doi.org/10.1016/0022-0981(96)02681-0
  43. NIFS. 2019. Technical report of national institute of fisheries science, 1097-1116.
  44. Park, J.H., Y.S. Cho, W.C. Lee, S.J. Hong, H.C. Kim and J.B Kim. 2012. Comparison of material flux at the sediment-water interface in marine finfish and abalone cage farms, southern coast of Korea: in-situ and laboratory incubation examination. Journal of the Korean Society of Marine Environment & Safety 18(6): 536-544. https://doi.org/10.7837/kosomes.2012.18.6.536
  45. Peters, K.E., R.E. Sweeney and I.R. Kaplan. 1978. Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter 1. Limnology and Oceanography 23(4): 598-604. https://doi.org/10.4319/lo.1978.23.4.0598
  46. Phillips, D.L., R. Inger, S. Bearhop, A.L. Jackson, J.W. Moore, A.C. Parnell and E.J. Ward. 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92(10): 823-835. https://doi.org/10.1139/cjz-2014-0127
  47. Piedecausa, M.A., F. Aguado-Gimenez, J. Cerezo Valverde, M.D. Hernandez Llorente and B. Garcia-Garcia. 2012. Influence of fish food and faecal pellets on short-term oxygen uptake, ammonium flux and acid volatile sulphide accumulation in sediments impacted by fish farming and non-impacted sediments. Aquaculture Research 43(1): 66-74. https://doi.org/10.1111/j.1365-2109.2011.02801.x
  48. Prahl, F.G., J.R. Ertel, M.A. Goni, M.A. Sparrow and B. Eversmeyer. 1994. Terrestrial organic carbon contributions to sediments on the Washington margin. Geochimica et Cosmochimica Acta 58(14): 3035-3048. https://doi.org/10.1016/0016-7037(94)90177-5
  49. Rau, G.H., R.E. Sweeney and I.R. Kaplan. 1982. Plankton 13C: 12C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Research Part A. Oceanographic Research Papers 29(8): 1035-1039. https://doi.org/10.1016/0198-0149(82)90026-7
  50. Redfield, A.C. 1958. The biological control of chemical factors in the environment. American Scientist 46(3): 230-221.
  51. Sim, B.R., H.C. Kim, S. Kang, D.I. Lee, S. Hong, S.H. Lee and Y. Kim. 2020. Geochemical Indicators for the Recovery of Sediment Quality after the Abandonment of Oyster Crassostrea gigas Farming in South Korea. Korean Journal of Fisheries and Aquatic Sciences 53(5): 773-783. https://doi.org/10.5657/KFAS.2020.0773
  52. Smith, B.N. and S. Epstein. 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiology 47(3): 380-384. https://doi.org/10.1104/pp.47.3.380
  53. Smith, J.A., D. Mazumder, I.M. Suthers and M.D. Taylor. 2013. To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods in Ecology and Evolution 4(7): 612-618. https://doi.org/10.1111/2041-210X.12048
  54. Thornton, S.F. and J. McManus. 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science 38(3): 219-233. https://doi.org/10.1006/ecss.1994.1015
  55. Tovar, A., C. Moreno, M.P. Manuel-Vez and M. Garciia-Vargas. 2000. Environmental implications of intensive marine aquaculture in earthen ponds. Marine Pollution Bulletin 40(11): 981-988. https://doi.org/10.1016/S0025-326X(00)00040-0
  56. Wai, T.C., K.M. Leung, R.S. Wu, P.K. Shin, S.G. Cheung, X.Y. Li and J.H. Lee. 2011. Stable isotopes as a useful tool for revealing the environmental fate and trophic effect of opensea-cage fish farm wastes on marine benthic organisms with different feeding guilds. Marine Pollution Bulletin 63(5-12): 77-85. https://doi.org/10.1016/j.marpolbul.2011.05.005
  57. Yokoyama, H. and Y. Ishihi. 2003. Feeding of the bivalve Theora lubrica on benthic microalgae: isotopic evidence. Marine Ecology Progress Series 255: 303-309. https://doi.org/10.3354/meps255303
  58. Yokoyama, H., K. Abo and Y. Ishihi. 2006. Quantifying aquaculture-derived organic matter in the sediment in and around a coastal fish farm using stable carbon and nitrogen isotope ratios. Aquaculture 254(1-4): 411-425. https://doi.org/10.1016/j.aquaculture.2005.10.024
  59. Zhou, Y., H. Yang, H. Hu, Y. Liu, Y. Mao, H. Zhou and F. Zhang. 2006. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture 252(2-4): 264-276. https://doi.org/10.1016/j.aquaculture.2005.06.046