References
- T. Akram, H. M. J. Lodhi, S. R. Naqvi, S. Naeem, M. Alhaisoni, M. Ali, S. A. Haider, and N. N. Qadri, "A multilevel features selection framework for skin lesion classification," Human-centric Computing and Information Sciences, vol. 10, article no. 12, 2020. https://doi.org/10.1186/s13673-020-00216-y
- D. Cao, Z. Chen, and L. Gao, L. (2020). An improved object detection algorithm based on multi-scaled and deformable convolutional neural networks. Human-centric Computing and Information Sciences, vol. 10, article no. 14, 2020. https://doi.org/10.1186/s13673-020-00219-9
- J. Lee and K. I. Hwang, "RAVIP: real-time AI vision platform for heterogeneous multi-channel video stream," Journal of Information Processing Systems, vol. 17, no. 2, pp. 227-241, 2021. https://doi.org/10.3745/JIPS.02.0154
- S. Shokat, R. Riaz, S. S. Rizvi, A. M. Abbasi, A. A. Abbasi, and S. J. Kwon, "Deep learning scheme for character prediction with position-free touch screen-based Braille input method," Human-centric Computing and Information Sciences, vol. 10, article no. 41, 2020. https://doi.org/10.1186/s13673-020-00246-6
- S. D. You, C. H. Liu, and W. K. Chen, W. K. (2018). Comparative study of singing voice detection based on deep neural networks and ensemble learning. Human-centric Computing and Information Sciences, vol. 8, article no. 34, 2018. https://doi.org/10.1186/s13673-018-0158-1
- K. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D. Poshyvanyk, "Machine learning-based prototyping of graphical user interfaces for mobile apps," IEEE Transactions on Software Engineering, vol. 46, no. 2, pp. 196-221, 2018. https://doi.org/10.1109/tse.2018.2844788
- M. Tan and Q. Le, "Efficientnet: rethinking model scaling for convolutional neural networks," Proceedings of Machine Learning Research, vol. 97, pp. 6105-6114, 2019.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 2016, pp. 770-778.
- H. Han, "Residual learning based CNN for gesture recognition in robot interaction," Journal of Information Processing Systems, vol. 17, no. 2, pp. 385-398, 2021. https://doi.org/10.3745/JIPS.01.0072
- T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal loss for dense object detection," in Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017, pp. 2999-3007.
- BoundingBoxerImg [Online]. Available: https://github.com/jms0923/BoundingBoxerImg.
- M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, "The pascal visual object classes (VOC) challenge," International Journal of Computer Vision, vol. 88, no. 2, pp. 303-338, 2010. https://doi.org/10.1007/s11263-009-0275-4
- M. Aamir, Y. F. Pu, W. A. Abro, H. Naeem, and Z. Rahman, "A hybrid approach for object proposal generation," in The Proceedings of the International Conference on Sensing and Imaging. Cham, Switzerland: Springer, 2017, pp. 251-259.
- M. Aamir, Y. F. Pu, Z. Rahman, W. A. Abro, H. Naeem, F. Ullah, and A. M. Badr, "A hybrid proposed framework for object detection and classification," Journal of Information Processing Systems, vol. 14, no. 5, pp. 1176-1194, 2018. https://doi.org/10.3745/JIPS.02.0095
- Y. Guan, M. Aamir, Z. Hu, W. A. Abro, Z. Rahman, Z. A. Dayo, and S. Akram, "A region-based efficient network for accurate object detection," Traitement du Signal, vol. 38, no. 2, pp. 481-494, 2021. https://doi.org/10.18280/ts.380228
- G. Hinton, N. Srivastava, and K. Swersky, "Neural Networks for Machine Learning: overview of minibatch gradient descent (Lecture 6a)," [Online]. Available: http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
- D. P. Kingma and J. Ba, "Adam: a method for stochastic optimization," 2014 [Online]. Available: https://arxiv.org/abs/1412.6980.