DOI QR코드

DOI QR Code

(K0.5Na0.5)NbO3-CaZrO3 계에서 입자모양과 입자성장 거동

Grain Shape and Grain Growth Behavior in the (K0.5Na0.5)NbO3-CaZrO3 System

  • 이철이 (경상국립대학교 나노.신소재공학부 세라믹공학전공) ;
  • 문경석 (경상국립대학교 나노.신소재공학부 세라믹공학전공)
  • Lee, Chul-Lee (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Moon, Kyoung-Seok (School of Materials Science and Engineering, Gyeongsang National University)
  • 투고 : 2022.03.31
  • 심사 : 2022.04.15
  • 발행 : 2022.04.28

초록

The grain growth behavior in the (1-x)K0.5Na0.5NbO3-xCaZrO3 (KNNCZ-x) system is studied as a function of the amount of CZ and grain shape. The (1-x)K0.5Na0.5NbO3-xCaZrO3 (KNNCZ-x) powders are synthesized using a conventional solid-state reaction method. A single orthorhombic phase is observed at x = 0 - 0.03. However, rhombohedral and orthorhombic phases are observed at x = 0.05. The grain growth behavior changes from abnormal grain growth to the suppression of grain growth as the amount of CaZrO3 (CZ) increases. With increasing CZ content, grains become more faceted, and the step-free energy increases. Therefore, the critical growth driving force increases. The grain size distribution broadens with increasing sintering time in KNNCZ-0.05. As a result, some large grains with a driving force larger than the critical driving force for growth exhibit abnormal grain growth behavior during sintering. Therefore, CZ changes the grain growth behavior and microstructure of KNN. Grain growth at the faceted interface of the KNNCZ system occurs via two-dimensional nucleation and growth.

키워드

과제정보

본 연구는 정부(교육부)의 재원으로 한국연구재단의 기초연구사업의 지원(2019R1I1A3A0106243712)을 받아 수행된 연구 과제로 이에 감사드립니다.

참고문헌

  1. M. Marz, A. Schletz, B. Eckardt, S. Egelkraut and H. Rauh: 6th Int. Conf. Integr. Power Electron. Syst., (2010) 1.
  2. R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. Thompson and M. Christopher: IEEE Trans. Electron. Packag. Manuf., 27 (2004) 164. https://doi.org/10.1109/TEPM.2004.843109
  3. H. Cheng, W. Zhou, H. Du, F. Luo, D. Zhu and B. Xu: Int. J. Appl. Ceram. Technol., 12 (2015) E17. https://doi.org/10.1111/ijac.12179
  4. Z. Liu, H. Fan, S. Lei, X. Ren and C. Long: J. Eur. Ceram. Soc., 37 (2017) 115. https://doi.org/10.1016/j.jeurceramsoc.2016.07.024
  5. Z. Liu, A. Zhang, J. Lu, B. Xie, B. Liang, Y. Mao and H. Fan: J. Alloys Compd., 817 (2020) 152798. https://doi.org/10.1016/j.jallcom.2019.152798
  6. H.D. Megaw and G. Solids.: Trans. Faraday Soc., 42 (1946) A224. https://doi.org/10.1039/TF946420A224
  7. G. Shirane, R. Newnham and R. Pepinsky: Phys. Rev. Lett., 96 (1954) 581.
  8. E. A. Wood: Acta Crystallogr., 4 (1951) 353. https://doi.org/10.1107/S0365110X51001112
  9. C.-W. Ahn, C.-S. Park, R. Dittmer, S.-H. Hong and S. Priya: J. Mater. Sci., 45 (2010) 396.
  10. R. Wang, H. Bando and M. Itoh: Appl. Phys. Lett., 95 (2009) 092905. https://doi.org/10.1063/1.3224196
  11. G. Haertling: J. Am. Ceram. Soc., 5 (1967) 329. https://doi.org/10.1111/j.1151-2916.1967.tb15121.x
  12. J. Wu, D. Xiao and J. Zhu: Chem. Rev., 115 (2015) 2559. https://doi.org/10.1021/cr5006809
  13. R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi and M. Itoh: Phys. Status Solidi Rapid Res. Lett., 3 (2009) 142. https://doi.org/10.1002/pssr.200903090
  14. R. Wang, H. Bando, M. Kidate, Y. Nishihara and M. Itoh: Jpn. J. Appl. Phys., 50 (2011) 09ND10. https://doi.org/10.7567/JJAP.50.09ND10
  15. W. Liang, W. Wu, D. Xiao and J. Zhu: J. Am. Ceram. Soc., 94 (2011) 4317. https://doi.org/10.1111/j.1551-2916.2011.04660.x
  16. G. Yao, X. Wang, T. Sun and L. Li: J. Am. Ceram. Soc., 94 (2011) 3856. https://doi.org/10.1111/j.1551-2916.2011.04563.x
  17. T. Hoshina, S. Hatta, H. Takeda and T. Tsurumi: Jpn. J. Appl. Phys., 5 (2018) 0902BB.
  18. V. Buscaglia and C.A. Randall: J. Eur. Ceram. Soc., 40 (2020) 3744. https://doi.org/10.1016/j.jeurceramsoc.2020.01.021
  19. T. Hoshina: J. Ceram. Soc. Jpn., 121 (2013) 156. https://doi.org/10.2109/jcersj2.121.156
  20. S.-J. L. Kang: Elsevier Butterworth-Heinemann, Oxford, UK, (2005).
  21. Y.-I. Jung, S.-J. L. Kang and D. Y. Yoon: J. Mater. Res., 24 (2009) 2949. https://doi.org/10.1557/jmr.2009.0356
  22. M. Hillert: Acta Metall., 13 (1965) 227. https://doi.org/10.1016/0001-6160(65)90200-2
  23. K.-S. Moon: J. Powder Mater., 2 (2018) 104.
  24. P. Kabakov, C. Dean, V. Kurusingal, Z. Cheng, H.-Y. Lee and S. Zhang: J. Mater. Chem. C., 8 (2020) 7606. https://doi.org/10.1039/D0TC01220C