DOI QR코드

DOI QR Code

Characterization of a Thermostable Lichenase from Bacillus subtilis B110 and Its Effects on β-Glucan Hydrolysis

  • Huang, Zhen (Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University) ;
  • Ni, Guorong (College of Land Resources and Environment, Jiangxi Agricultural University) ;
  • Wang, Fei (College of Bioscience and Bioengineering, Jiangxi Agricultural University) ;
  • Zhao, Xiaoyan (College of Bioscience and Bioengineering, Jiangxi Agricultural University) ;
  • Chen, Yunda (College of Bioscience and Bioengineering, Jiangxi Agricultural University) ;
  • Zhang, Lixia (College of Bioscience and Bioengineering, Jiangxi Agricultural University) ;
  • Qu, Mingren (Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University)
  • Received : 2021.11.10
  • Accepted : 2021.12.13
  • Published : 2022.04.28

Abstract

Lichenase is an enzyme mainly implicated in the degradation of polysaccharides in the cell walls of grains. Emerging evidence shows that a highly efficient expression of a thermostable recombinant lichenase holds considerable promise for application in the beer-brewing and animal feed industries. Herein, we cloned a lichenase gene (CelA203) from Bacillus subtilis B110 and expressed it in E. coli. This gene contains an ORF of 729 bp, encoding a protein with 242 amino acids and a calculated molecular mass of 27.3 kDa. According to the zymogram results, purified CelA203 existed in two forms, a monomer, and a tetramer, but only the tetramer had potent enzymatic activity. CelA203 remained stable over a broad pH and temperature range and retained 40% activity at 70℃ for 1 h. The Km and Vmax of CelA203 towards barley β-glucan and lichenan were 3.98 mg/ml, 1017.17 U/mg, and 2.78 mg/ml, 198.24 U/mg, respectively. Furthermore, trisaccharide and tetrasaccharide were the main products obtained from CelA203-mediated hydrolysis of deactivated oat bran. These findings demonstrate a promising role for CelA203 in the production of oligosaccharides in animal feed and brewing industries.

Keywords

Acknowledgement

This research was supported by funding from China Agriculture Research System of MOF and MARA (CARS-37) and the Postgraduate Innovation Special Foundation of Jiangxi Province (YC2020-B087).

References

  1. Hasamudin WHW, Kennedy JF. 1994. Chemistry and biology of 1,3-β-glucans. Carbohydr. Polym. 25: 61-62. https://doi.org/10.1016/0144-8617(94)90166-X
  2. Buckeridge MS, Vergar CE, Carpita NC. 1999. The mechanism of synthesis of a mixed-linkage (1→3), (1→4)beta-D-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol. 120: 1105-1116. https://doi.org/10.1104/pp.120.4.1105
  3. Wood PJ, Weisz J, Blackwell BA. 1994. Structural studies of (1→3), (1→4)-beta-d-glucans by C(13)-nuclear magnetic-resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chem. 71: 301-307.
  4. McCarthy T, Hanniffy O, Savage A, Tuohy MG. 2003. Catalytic properties and mode of action of three endo-β-glucanases from Talaromyces emersonii on soluble β-1,4- and β-1,3-1,4-linked glucans. Int. J. Biol. Macromol. 33: 141-148. https://doi.org/10.1016/S0141-8130(03)00080-1
  5. Boyce A, Walsh G. 2007. Production, purification and application relevant characterization of an endo-1,3(4)-β-glucanase from Rhizomucor miehei. Appl. Microbiol. Biotechnol. 76: 835-841. https://doi.org/10.1007/s00253-007-1058-x
  6. James, Arthur E, Fare, Godfrey, Sagar, Brian F, et al. 1975. β-1,4/β-1,3-glucanase. United States Patent. 3880742.
  7. Planas A. 2000. Bacterial 1,3-1,4-beta-glucanases: structure, function and protein engineering. Biochim. Biophys. Acta 1543: 361-382. https://doi.org/10.1016/S0167-4838(00)00231-4
  8. Elgharbi F, Hlima HB, Ameri R, Bejar S, Hmida-Sayari A. 2017. A trimeric and thermostable lichenase from B. pumilus US570 strain: biochemical and molecular characterization. Int. J. Biol. Macromol. 95: 273-280. https://doi.org/10.1016/j.ijbiomac.2016.11.021
  9. Furtado GP, Ribeiro LF, Santos CR, et al. 2011. Biochemical and structural characterization of a β-1,3-1,4-glucanase from Bacillus subtilis 168. Process Biochem. 46: 1202-1206. https://doi.org/10.1016/j.procbio.2011.01.037
  10. Sameh M, Claire M, Nabil M, Semia EC, Magali RS. 2015. A highly thermostable lichenase from Bacillus sp. UEB-S: biochemical and molecular characterization. J. Mol. Catal. B: Enzym. 115: 8-12. https://doi.org/10.1016/j.molcatb.2015.01.016
  11. Niu C, Liu C, Li Y. 2018. Production of a thermostable 1,3-1,4-β-glucanase mutant in Bacillus subtilis WB600 at a high fermentation capacity and its potential application in the brewing industry. Int. J. Biol. Macromol. 107: 28-34. https://doi.org/10.1016/j.ijbiomac.2017.08.139
  12. Mao S, Lu Z, Zhang C, Lu F, Bie X. 2013. Purification, characterization, and heterologous expression of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9. Appl. Biochem. Biotechnol. 169: 960-975. https://doi.org/10.1007/s12010-012-0064-3
  13. Wang J, Niu C, Liu X, Qi L. 2014. Characterization of a New 1,3-1,4-β-glucanase gene from Bacillus tequilensis CGX5-1. Appl. Biochem. Biotechnol. 173: 826-837. https://doi.org/10.1007/s12010-014-0900-8
  14. Zhang B, Liu Y, Yang H, Yan Q, Yang S, Jiang ZQ, et al. 2017. Biochemical properties and application of a novel β-1,3-1,4-glucanase from Paenibacillus barengoltzii. Food Chem. 234: 68-75. https://doi.org/10.1016/j.foodchem.2017.04.162
  15. Cerda LA, Valenzuela SV, Diaz P, Pastor FIJ. 2016. New GH16 β-glucanase from Paenibacillus barcinonensis BP-23 releases a complex pattern of mixed-linkage oligomers from barley glucan. Biotechnol. Appl. Biochem. 63: 51-56. https://doi.org/10.1002/bab.1348
  16. Chaari F, Fendri LB, Blibech M, Driss D. 2014. Biochemical characterization of a lichenase from Penicillium occitanis Pol6 and its potential application in the brewing industry. Process Biochem. 49: 1040-1046. https://doi.org/10.1016/j.procbio.2014.02.023
  17. Yan Q, Yang H, Jiang Z, Liu E, Yang S. 2018. A novel thermostable β-1,3-1,4-glucanase from Thermoascus aurantiacus and its application in oligosaccharide production from oat bran. Carbohydr. Res. 469: 31-37. https://doi.org/10.1016/j.carres.2018.08.017
  18. Liu X, Jiang Z, Ma S, Yan Q, Chen Z, Liu H. 2020. High-level production and characterization of a novel β-1,3-1,4-glucanase from Aspergillus awamori and its potential application in the brewing industry. Process Biochem. 92: 252-260. https://doi.org/10.1016/j.procbio.2020.01.017
  19. Elgharbi F, Hmida-Sayari A, Sahnoun M, Kammoun R, Jlaeil L, Hassairi H, et al. 2013. Purification and biochemical characterization of a novel thermostable lichenase from Aspergillus niger US368. Carbohydr. Polym. 98: 967-975. https://doi.org/10.1016/j.carbpol.2013.07.009
  20. Kaiser D, Manoil C, Dworkin M. 1979. Myxobacteria: cell interactions, genetics, and development. Annu. Rev. Microbiol. 33: 595-639. https://doi.org/10.1146/annurev.mi.33.100179.003115
  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  22. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  23. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  24. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  25. Murphy N, McConnell DJ, Cantwell BA. 1984. The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme beta-glucanase. Nucleic Acids Res. 13: 355-5367. https://doi.org/10.1093/nar/13.2.355
  26. Hofemeister J, Kurtz A, Borriss R, Knowles J. 1986. The beta-glucanase gene from Bacillus amyloliquefaciens shows extensive homology with that of Bacillus subtilis. Gene 49: 177-187. https://doi.org/10.1016/0378-1119(86)90278-7
  27. Lloberas J, Perez-Pons JA, Querol E. 2010. Molecular cloning, expression and nucleotide sequence of the endo-beta-1,3-1,4-D-glucanase gene from Bacillus licheniformis, Predictive structural analyses of the encoded polypeptide. Eur. J. Biochem. 197: 337-343. https://doi.org/10.1111/j.1432-1033.1991.tb15916.x
  28. Gosalbes MJ, Perez-Gonzalez JA, Gonzalez R, Navarro A. 1991. Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase. J. Bacteriol. 173: 7705-7710. https://doi.org/10.1128/jb.173.23.7705-7710.1991
  29. Borriss R, Buettner K, Maentsaelae P. 1990. Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans: homologies to other beta-glucanases. Mol. Gen. Genet. 222: 278-283. https://doi.org/10.1007/BF00633829
  30. Gaiser OJ, Piotukh K, Ponnuswamy MN, Planas A, Borriss R, Heinemann U. 2006. Structural basis for the substrate specificity of a bacillus 1,3-1,4-β-glucanase. J. Mol. Biol. 357: 1211-1225. https://doi.org/10.1016/j.jmb.2006.01.014
  31. Schimming S, Schwarz WH, Staudenbauer WL. 1991. Properties of a thermoactive beta-1,3-1,4-glucanase (lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochem. Biophys. Res. Commun. 177: 447-452. https://doi.org/10.1016/0006-291X(91)92004-4
  32. Flint HJ, Martin J, Mcpherson CA, Daniel AS, Zhang JX. 1993. A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J. Bacteriol. 175: 2943-2951. https://doi.org/10.1128/jb.175.10.2943-2951.1993
  33. Ontanon OM, Ghio S, Villegas RMD, Garrido MM, Talia PM., Feher C, et al. 2019. A thermostable GH8 endoglucanase of Enterobacter sp. R1 is suitable for β-glucan deconstruction. Food Chem. 298: 124999. https://doi.org/10.1016/j.foodchem.2019.124999
  34. Murraya PG, Grassickb A, Laffeya CD, Cuffeb MM, Higginsb T, Savageb AV, et al. 2001. Isolation and characterization of a thermostable endo-β-glucanase active on 1,3-1,4-β-d-glucans from the aerobic fungus Talaromyces emersonii cBs 814.70. Enzyme Microb. Technol. 29: 90-98. https://doi.org/10.1016/S0141-0229(01)00354-4
  35. Anish R, Rao M. 2007. Biochemical characterization of a novel β-1,3-1,4 glucan 4-glucanohydrolase from Thermomonospora sp. having a single active site for lichenan and xylan. Biochimie 89: 1489-1497. https://doi.org/10.1016/j.biochi.2007.06.010
  36. Sun J, Wang H, Lv W, Ma C, Lou Z, Yao H, et al. 2012. Cloning and expression of a thermostable β-1,3-1,4-glucanase from Bacillus amyloliquefaciens ATCC 23350. Ann. Microbiol. 62: 1235-1242. https://doi.org/10.1007/s13213-011-0366-7
  37. Chaari F, Bhiri F, Blibecha M, Maktouf S, Ellouz-Chaabouni S, Ellouz-Ghorbel R. 2012. Potential application of two thermostable lichenases from a newly isolated Bacillus licheniformis UEB CF: purification and characterization. Process Biochem. 47: 509-516. https://doi.org/10.1016/j.procbio.2011.12.010
  38. Beur H, Na, Jung WK, Jeong YS, Kim HJ, Kim SK, et al. 2015. Characterization of a GH family 8 β-1,3-1,4-glucanase with distinctive broad substrate specificity from Paenibacillus sp. X4. Biotechnol. Lett. 37: 643-655. https://doi.org/10.1007/s10529-014-1724-x
  39. Hakamada Y, Endo K, Takizawa S, Kobayashi T, Shirai T, Yamane T, et al. 2002. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim. Biophys. Acta 1570: 174-180. https://doi.org/10.1016/S0304-4165(02)00194-0
  40. Elgharbi F, Hlima HB, Ameri R, Bejari S, Hmida-Sayari A. 2017. A trimeric and thermostable lichenase from B. pumilus US570 strain: biochemical and molecular characterization. Int. J. Biol. Macromol. 95: 273-280. https://doi.org/10.1016/j.ijbiomac.2016.11.021
  41. Qiao J, Dong B, Li Y, Zhang B, Cao Y. 2009. Cloning of a beta-1,3-1,4-glucanase 448 gene from Bacillus subtilis MA139 and its functional expression in Escherichia 449 coli. Appl. Microbiol. Biotechnol. 152: 334-342.
  42. Akita M, Kayatama K, Hatada Y, Ito S, Horikoshi K. 2005. A novel β-glucanase gene from Bacillus halodurans C-125. FEMS Microbiol. Lett. 248: 9-15. https://doi.org/10.1016/j.femsle.2005.05.009
  43. Bhattarai Y, Kashyap PC. 2016. Agaro-oligosaccharides: a new frontier in the fight against colon cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 310: 335-336.
  44. Li M, Li G, Zhu L, Yin Y, Zhao X, Xiang C, et al. 2014. Isolation and characterization of an agaro-oligosaccharide (AO)-hydrolyzing bacterium from the gut microflora of Chinese individuals. PLoS One 9: e911063.
  45. Hughes SA, Shewry PR, Gibson GR, McCleary BV, Rastall RA. 2008. In vitro fermentation of oat and barley derived β-glucans by human faecal microbiota. FEMS Microbiol. Ecol. 64: 482-493. https://doi.org/10.1111/j.1574-6941.2008.00478.x
  46. Kim KH, Kim YO, Ko BS, Youn HJ, Lee DS. 2004. Over-expression of the gene (bglBC1) from Bacillus circulans encoding an endo-b-(1->3), (1->4)-glucanase useful for the preparation of oligosaccharides from barley β-glucan. Biotechnol. Lett. 26: 1749-1755. https://doi.org/10.1007/s10529-004-4581-1
  47. Yan Q, Yang H, Jiang Z, Liu E, Yang S. 2018. A novel thermostable β-1,3-1,4-glucanase from Thermoascus aurantiacus and its application in oligosaccharide production from oat bran. Carbohydr. Res. 469: 31-37. https://doi.org/10.1016/j.carres.2018.08.017