DOI QR코드

DOI QR Code

2상 유한체적모델 기반의 광역적 토석류 유동해석기법

Two-phase Finite Volume Analysis Method of Debris Flows in Regional-scale Areas

  • 정상섬 (연세대학교 건설환경공학과) ;
  • 홍문현 (연세대학교 건설환경공공학과)
  • 투고 : 2021.11.29
  • 심사 : 2022.03.04
  • 발행 : 2022.04.30

초록

본 연구에서는 토석류의 유동과 밀도 변화를 분석하기 위해 운동량방정식으로 단순화된 2상 유한체적모델(Landflow 모델)을 구성하였으며, Hershel-Buckley 유동모델을 사용하여 토석류의 내부 및 기저 마찰과 복잡한 지형 및 연행침식을 분석하였다. 또한 토석류 해석 모델을 수치적으로 해결하기 위하여 Harten-Lax-van Leer-Contact(HLLC) 방법을 포함한 관련 유한체적모델을 도입하여 토석류의 경계면에 대한 해를 구하였다. 충격흡수능력, 수치적 등방성, 모델정확도, 질량보존을 검증하기 위해 제안된 모델을 기반으로 원형 댐파괴, 비뉴턴 유체의 댐파쇄 및 다중 토석류 사례분석을 수행하였다. 해석 결과로부터 본 해석모델의 토석류 해석에 대한 수치적 안정성과 정확도를 확인하였다. 또한, 다양한 유동학적 특성의 토석류 흐름을 체계적으로 시뮬레이션하고 토석류 유동특성이 거동에 미치는 영향을 분석하였다.

To analyze the flow and density variations in debris flows, a two-phase finite volume model simplified with momentum equations was constructed in this study. The Hershel-Buckley rheology model was employed in this model to account for the internal and basal friction of debris flows and was utilized to analyze complex topography and entrainments of basal soil beds. In order to numerically solve the debris flow analysis model, a finite volume model with the Harten-Lax-van Leer-Contact method was used to solve the conservation equation for the debris flow interface. Case studies of circular dam failure, non-Newtonian fluid dam failure, and multiple debris flows were analyzed using the proposed model to evaluate shock absorption capacity, numerical isotropy, model accuracy, and mass conservation. The numerical stability and correctness of the debris flow analysis of this analysis model were proven by the analysis results. Additionally, the rate of debris flow with various rheological properties was systematically simulated, and the effect of debris flow rheological properties on behavior was analyzed.

키워드

과제정보

본 연구는 2020년도 정부(교육부)의 재원으로 한국연구재단(No. 2018R1A6A1A08025348) 기초연구사업의 지원을 받아 수행되었으며, 이에 깊은 감사를 드립니다.

참고문헌

  1. Ancey, C. and Cochard, S. (2009), The dam-break problem for Herschel-Bulkley viscoplastic fluids down steep flumes, Journal of Non-Newtonian Fluid Mechanics, Vol.158, No.1-3, pp.18-35. https://doi.org/10.1016/j.jnnfm.2008.08.008
  2. Bernabeu, N., Saramito, P., and Smutek, C. (2014), Numerical modeling of non-Newtonian viscoplastic flows: Part II. Viscoplastic fluids and general tridimensional topographies, International Journal of Numerical Analysis and Modeling, Vol.11, No.1, pp.213-228.
  3. Chen, H. and Lee, C. F. (2000), Numerical simulation of debris flows, Canadian Geotechnical Journal, Vol.37, No.1, pp.146-160. https://doi.org/10.1139/t99-089
  4. Crosta, G. B., Imposimato, S., and Roddeman, D. (2009), Numerical modelling of entrainment/deposition in rock and debris-avalanches, Engineering geology, Vol.109, No.1-2, pp.135-145. https://doi.org/10.1016/j.enggeo.2008.10.004
  5. Garcia-Delgado, H., Machuca, S., and Medina, E. (2019), Dynamic and geomorphic characterizations of the Mocoa debris flow (March 31, 2017, Putumayo Department, southern Colombia), Landslides, Vol.16, No.3, pp.597-609. https://doi.org/10.1007/s10346-018-01121-3
  6. Ginting, B. M. and Mundani, R. P. (2019), Comparis on of s hallow water solvers: Applications for dam-break and tsunami cases with reordering strategy for efficient vectorization on modern hardware, Water, Vol.11, No.4, pp.639. https://doi.org/10.3390/w11040639
  7. Hong, M. and Jeong, S. (2019), A Combined Method for Rainfall-induced Landslides and Debris flows in Regional-scale Areas, Journal of the Korean Geotechnical Society, Vol.35, No.10, pp. 17-31.
  8. Hong, M., Jeong, S., and Kim, J. (2019), A combined method for modeling the triggering and propagation of debris flows, Landslides, Vol.17, No.4, pp.805-824. https://doi.org/10.1007/s10346-019-01294-5
  9. Hou, J., Wang, T., Li, P. et al. (2018), An implicit friction source term treatment for overland flow simulation using shallow water flow model, Journal of Hydrology, Vol.564, pp.357-366. https://doi.org/10.1016/j.jhydrol.2018.07.027
  10. Hurlimann, M., Rickenmann, D., Medina, V., and Bateman, A. (2008), Evaluation of approaches to calculate debris-flow parameters for hazard assessment, Engineering Geology, Vol.102, No.3-4, pp.152-163. https://doi.org/10.1016/j.enggeo.2008.03.012
  11. Iverson, R. M. (1997), The physics of debris flows, Reviews of geophysics, Vol.35, No.3, pp.245-296. https://doi.org/10.1029/97RG00426
  12. Iverson, R. M., Reid, M. E., Logan, M. et al. (2011), Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nature Geoscience, Vol.4, No.2, pp.116-121. https://doi.org/10.1038/ngeo1040
  13. Jeong, S. W. and Park, S. S. (2016), On the viscous resistance of marine sediments for estimating their strength and flow characteristics, Geosciences Journal, Vol.20, No.2, pp.149-155. https://doi.org/10.1007/s12303-015-0032-3
  14. Johnson, C. G., Kokelaar, B. P., Iverson, R. M. et al. (2012), Grain-size segregation and levee formation in geophysical mass flows, Journal of Geophysical Research: Earth Surface, Vol.117, No.F1.
  15. Kaitna, R., Rickenmann, D., and Schatzmann, M. (2007), Experimental study on rheologic behaviour of debris flow material, Acta Geotechnica, Vol.2, No.2, pp.71-85. https://doi.org/10.1007/s11440-007-0026-z
  16. Kim, J. H., Kim, Y. M., Jeong, S. S., and Hong, M. H. (2017), Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes, Environmental Earth Sciences, Vol.76, No.23, pp.1-17. https://doi.org/10.1007/s12665-016-6304-z
  17. Laigle, D. and Coussot, P. (1997), Numerical modeling of mudflows, Journal of hydraulic engineering, Vol.123, No.7, pp.617-623. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:7(617)
  18. Li, J., Cao, Z., Hu, K. et al. (2018), A depth-averaged two-phase model for debris flows over erodible beds, Earth Surface Processes and Landforms, Vol.43, No.4, pp.817-839. https://doi.org/10.1002/esp.4283
  19. Liu, W., He, S., Li, X., and Xu, Q. (2016), Two-dimensional landslide dynamic simulation based on a velocity-weakening friction law, Landslides, Vol.13, No.5, pp.957-965. https://doi.org/10.1007/s10346-015-0632-z
  20. Medina, V., Hurlimann, M., and Bateman, A. (2008), Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula, Landslides, Vol.5, No.1, pp.127-142. https://doi.org/10.1007/s10346-007-0102-3
  21. Nikitin, K. D., Olshanskii, M. A., Terekhov, K. M., and Vassilevski, Y. V. (2011), A numerical method for the simulation of free surface flows of viscoplastic fluid in 3D, Journal of Computational Mathematics, pp.605-622.
  22. Pastor, M., Soga, K., McDougall, S., and Kwan, J. S. H. (2018), Review of benchmarking exercise on landslide runout analysis, In Proceedings of the Second JTC1 Workshop on Triggering and Propagation of Rapid Flow-like Landslides, pp.281-323.
  23. Parsons, J. D., Whipple, K. X., and Simoni, A. (2001), Experimental study of the grain flow, fluid-mud transition in Debris flows, The Journal of Geology, Vol.109, No.4, pp.427-447. https://doi.org/10.1086/320798
  24. Pastor, M., Yague, A., Stickle, M. M. et al. (2018), A two-phase SPH model for debris flow propagation, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.42, No.3, pp.418-448. https://doi.org/10.1002/nag.2748
  25. Pellegrino, A. M., Di, Santolo, A. S., and Schippa, L. (2016), The sphere drag rheometer: A new instrument for analysing mud and debris flow materials, GEOMATE Journal, Vol.11, No.25, pp.2512-2519.
  26. Pellegrino, A. M. and Schippa, L. (2018), A laboratory experience on the effect of grains concentration and coarse sediment on the rheology of natural debris-flows, Environmental earth sciences, Vol.77, No.22, pp.1-13. https://doi.org/10.1007/s12665-017-7169-5
  27. Pouliquen, O. and Forterre, Y. (2002), Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane, Journal of fluid mechanics, Vol.453, pp.133-151. https://doi.org/10.1017/S0022112001006796
  28. Pudasaini, S. P. (2012), A general two-phase debris flow model, Journal of Geophysical Research: Earth Surface, Vol.117, No.F3.
  29. Schatzmann, M., Bezzola, G. R., Minor, H. E. et al. (2009), Rheometry for large-particulated fluids: Analysis of the ball measuring system and comparison to debris flow rheometry, Rheologica Acta, Vol.48, No.7, pp.715-733. https://doi.org/10.1007/s00397-009-0364-x
  30. Scotto, Di., Santolo, A., Pellegrino, A. M., and Evangelista, A. (2010), Experimental study on the rheological behaviour of debris flow, Natural Hazards and Earth System Sciences, Vol.10, No.12, pp.2507-2514. https://doi.org/10.5194/nhess-10-2507-2010
  31. Sosio, R. and Crosta, G. B. (2009), Rheology of concentrated granular suspensions and possible implications for debris flow modeling, Water resources research, Vol.45, No.3.
  32. Wang, X., Morgenstern, N. R., and Chan, D. H. (2010), A model for geotechnical analys is of flow s lides and debris flows , Canadian geotechnical journal, Vol.47, No.12, pp.1401-1414. https://doi.org/10.1139/T10-039
  33. Whipple, K.X. (1997), Open-channel flow of Bingham fluids: Applications in debris-flow research, The Journal of Geology, Vol. 105, No.2, pp.243-262. https://doi.org/10.1086/515916
  34. Xia, X. and Liang, Q. (2018), A new depth-averaged model for flow-like landslides over complex terrains with curvatures and steep slopes, Engineering Geology, Vol.234, pp.174-191. https://doi.org/10.1016/j.enggeo.2018.01.011
  35. Xia, X., Liang, Q., Ming, X., and Hou, J. (2017), An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations, Water resources research, Vol.53, No.5, pp.3730-3759. https://doi.org/10.1002/2016WR020055
  36. Xia, X., Liang, Q., Pastor, M. et al. (2013), Balancing the source terms in a SPH model for solving the shallow water equations, Advances in water resources, Vol.59, pp.25-38. https://doi.org/10.1016/j.advwatres.2013.05.004
  37. Zanuttigh, B. and Lamberti, A. (2004), Analysis of debris wave development with one-dimensional shallow-water equations, Journal of Hydraulic Engineering, Vol.130, No.4, pp.293-304. https://doi.org/10.1061/(asce)0733-9429(2004)130:4(293)