과제정보
본 연구는 2020년도 정부(교육부)의 재원으로 한국연구재단(No. 2018R1A6A1A08025348) 기초연구사업의 지원을 받아 수행되었으며, 이에 깊은 감사를 드립니다.
참고문헌
- Ancey, C. and Cochard, S. (2009), The dam-break problem for Herschel-Bulkley viscoplastic fluids down steep flumes, Journal of Non-Newtonian Fluid Mechanics, Vol.158, No.1-3, pp.18-35. https://doi.org/10.1016/j.jnnfm.2008.08.008
- Bernabeu, N., Saramito, P., and Smutek, C. (2014), Numerical modeling of non-Newtonian viscoplastic flows: Part II. Viscoplastic fluids and general tridimensional topographies, International Journal of Numerical Analysis and Modeling, Vol.11, No.1, pp.213-228.
- Chen, H. and Lee, C. F. (2000), Numerical simulation of debris flows, Canadian Geotechnical Journal, Vol.37, No.1, pp.146-160. https://doi.org/10.1139/t99-089
- Crosta, G. B., Imposimato, S., and Roddeman, D. (2009), Numerical modelling of entrainment/deposition in rock and debris-avalanches, Engineering geology, Vol.109, No.1-2, pp.135-145. https://doi.org/10.1016/j.enggeo.2008.10.004
- Garcia-Delgado, H., Machuca, S., and Medina, E. (2019), Dynamic and geomorphic characterizations of the Mocoa debris flow (March 31, 2017, Putumayo Department, southern Colombia), Landslides, Vol.16, No.3, pp.597-609. https://doi.org/10.1007/s10346-018-01121-3
- Ginting, B. M. and Mundani, R. P. (2019), Comparis on of s hallow water solvers: Applications for dam-break and tsunami cases with reordering strategy for efficient vectorization on modern hardware, Water, Vol.11, No.4, pp.639. https://doi.org/10.3390/w11040639
- Hong, M. and Jeong, S. (2019), A Combined Method for Rainfall-induced Landslides and Debris flows in Regional-scale Areas, Journal of the Korean Geotechnical Society, Vol.35, No.10, pp. 17-31.
- Hong, M., Jeong, S., and Kim, J. (2019), A combined method for modeling the triggering and propagation of debris flows, Landslides, Vol.17, No.4, pp.805-824. https://doi.org/10.1007/s10346-019-01294-5
- Hou, J., Wang, T., Li, P. et al. (2018), An implicit friction source term treatment for overland flow simulation using shallow water flow model, Journal of Hydrology, Vol.564, pp.357-366. https://doi.org/10.1016/j.jhydrol.2018.07.027
- Hurlimann, M., Rickenmann, D., Medina, V., and Bateman, A. (2008), Evaluation of approaches to calculate debris-flow parameters for hazard assessment, Engineering Geology, Vol.102, No.3-4, pp.152-163. https://doi.org/10.1016/j.enggeo.2008.03.012
- Iverson, R. M. (1997), The physics of debris flows, Reviews of geophysics, Vol.35, No.3, pp.245-296. https://doi.org/10.1029/97RG00426
- Iverson, R. M., Reid, M. E., Logan, M. et al. (2011), Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nature Geoscience, Vol.4, No.2, pp.116-121. https://doi.org/10.1038/ngeo1040
- Jeong, S. W. and Park, S. S. (2016), On the viscous resistance of marine sediments for estimating their strength and flow characteristics, Geosciences Journal, Vol.20, No.2, pp.149-155. https://doi.org/10.1007/s12303-015-0032-3
- Johnson, C. G., Kokelaar, B. P., Iverson, R. M. et al. (2012), Grain-size segregation and levee formation in geophysical mass flows, Journal of Geophysical Research: Earth Surface, Vol.117, No.F1.
- Kaitna, R., Rickenmann, D., and Schatzmann, M. (2007), Experimental study on rheologic behaviour of debris flow material, Acta Geotechnica, Vol.2, No.2, pp.71-85. https://doi.org/10.1007/s11440-007-0026-z
- Kim, J. H., Kim, Y. M., Jeong, S. S., and Hong, M. H. (2017), Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes, Environmental Earth Sciences, Vol.76, No.23, pp.1-17. https://doi.org/10.1007/s12665-016-6304-z
- Laigle, D. and Coussot, P. (1997), Numerical modeling of mudflows, Journal of hydraulic engineering, Vol.123, No.7, pp.617-623. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:7(617)
- Li, J., Cao, Z., Hu, K. et al. (2018), A depth-averaged two-phase model for debris flows over erodible beds, Earth Surface Processes and Landforms, Vol.43, No.4, pp.817-839. https://doi.org/10.1002/esp.4283
- Liu, W., He, S., Li, X., and Xu, Q. (2016), Two-dimensional landslide dynamic simulation based on a velocity-weakening friction law, Landslides, Vol.13, No.5, pp.957-965. https://doi.org/10.1007/s10346-015-0632-z
- Medina, V., Hurlimann, M., and Bateman, A. (2008), Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula, Landslides, Vol.5, No.1, pp.127-142. https://doi.org/10.1007/s10346-007-0102-3
- Nikitin, K. D., Olshanskii, M. A., Terekhov, K. M., and Vassilevski, Y. V. (2011), A numerical method for the simulation of free surface flows of viscoplastic fluid in 3D, Journal of Computational Mathematics, pp.605-622.
- Pastor, M., Soga, K., McDougall, S., and Kwan, J. S. H. (2018), Review of benchmarking exercise on landslide runout analysis, In Proceedings of the Second JTC1 Workshop on Triggering and Propagation of Rapid Flow-like Landslides, pp.281-323.
- Parsons, J. D., Whipple, K. X., and Simoni, A. (2001), Experimental study of the grain flow, fluid-mud transition in Debris flows, The Journal of Geology, Vol.109, No.4, pp.427-447. https://doi.org/10.1086/320798
- Pastor, M., Yague, A., Stickle, M. M. et al. (2018), A two-phase SPH model for debris flow propagation, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.42, No.3, pp.418-448. https://doi.org/10.1002/nag.2748
- Pellegrino, A. M., Di, Santolo, A. S., and Schippa, L. (2016), The sphere drag rheometer: A new instrument for analysing mud and debris flow materials, GEOMATE Journal, Vol.11, No.25, pp.2512-2519.
- Pellegrino, A. M. and Schippa, L. (2018), A laboratory experience on the effect of grains concentration and coarse sediment on the rheology of natural debris-flows, Environmental earth sciences, Vol.77, No.22, pp.1-13. https://doi.org/10.1007/s12665-017-7169-5
- Pouliquen, O. and Forterre, Y. (2002), Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane, Journal of fluid mechanics, Vol.453, pp.133-151. https://doi.org/10.1017/S0022112001006796
- Pudasaini, S. P. (2012), A general two-phase debris flow model, Journal of Geophysical Research: Earth Surface, Vol.117, No.F3.
- Schatzmann, M., Bezzola, G. R., Minor, H. E. et al. (2009), Rheometry for large-particulated fluids: Analysis of the ball measuring system and comparison to debris flow rheometry, Rheologica Acta, Vol.48, No.7, pp.715-733. https://doi.org/10.1007/s00397-009-0364-x
- Scotto, Di., Santolo, A., Pellegrino, A. M., and Evangelista, A. (2010), Experimental study on the rheological behaviour of debris flow, Natural Hazards and Earth System Sciences, Vol.10, No.12, pp.2507-2514. https://doi.org/10.5194/nhess-10-2507-2010
- Sosio, R. and Crosta, G. B. (2009), Rheology of concentrated granular suspensions and possible implications for debris flow modeling, Water resources research, Vol.45, No.3.
- Wang, X., Morgenstern, N. R., and Chan, D. H. (2010), A model for geotechnical analys is of flow s lides and debris flows , Canadian geotechnical journal, Vol.47, No.12, pp.1401-1414. https://doi.org/10.1139/T10-039
- Whipple, K.X. (1997), Open-channel flow of Bingham fluids: Applications in debris-flow research, The Journal of Geology, Vol. 105, No.2, pp.243-262. https://doi.org/10.1086/515916
- Xia, X. and Liang, Q. (2018), A new depth-averaged model for flow-like landslides over complex terrains with curvatures and steep slopes, Engineering Geology, Vol.234, pp.174-191. https://doi.org/10.1016/j.enggeo.2018.01.011
- Xia, X., Liang, Q., Ming, X., and Hou, J. (2017), An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations, Water resources research, Vol.53, No.5, pp.3730-3759. https://doi.org/10.1002/2016WR020055
- Xia, X., Liang, Q., Pastor, M. et al. (2013), Balancing the source terms in a SPH model for solving the shallow water equations, Advances in water resources, Vol.59, pp.25-38. https://doi.org/10.1016/j.advwatres.2013.05.004
- Zanuttigh, B. and Lamberti, A. (2004), Analysis of debris wave development with one-dimensional shallow-water equations, Journal of Hydraulic Engineering, Vol.130, No.4, pp.293-304. https://doi.org/10.1061/(asce)0733-9429(2004)130:4(293)