DOI QR코드

DOI QR Code

완충재-근계암반 상호작용을 고려한 압축 벤토나이트 완충재 침식 및 파이핑 연구 현황 및 주요 영향인자 도출

Review of Erosion and Piping in Compacted Bentonite Buffers Considering Buffer-Rock Interactions and Deduction of Influencing Factors

  • 투고 : 2021.12.10
  • 심사 : 2022.01.03
  • 발행 : 2022.02.28

초록

고준위방사성폐기물 심지층처분장은 공학적방벽과 천연방벽의 다중방벽으로 이루어져 있으며 각 방벽재 사이의 상호작용에 의해 처분시스템의 전반적인 장기 건전성이 영향을 받게 된다. 특히 공학적방벽재인 압축 벤토나이트 완충재와 천연방벽인 근계암반의 상호작용에 의한 완충재의 침식 및 파이핑 현상은 사용후핵연료의 붕괴열 발산, 지하수 유입 저지 및 핵종 이동 저지의 역할을 수행하는 완충재의 성능을 저하시키기 된다. 처분 초기에 벤토나이트 완충재가 흡수할 수 있는 물의 양보다 많은 유량이 근계암반의 절리로부터 유입되면 잉여 지하수로 인한 수압이 발생하고 이로 인해 완충재 자체 및 갭채움재 주변으로 파이핑 현상이 발생할 수 있다. 또한 지하수와 벤토나이트 완충재의 물리-화학적 상호작용으로 인하여 완충재의 표면의 팽윤 및 겔/졸화로 인하여 완충재의 표면에서 침식이 발생할 수 있다. 따라서, 이러한 침식 및 파이핑 현상이 발생하는 조건과 이로 인한 완충재의 건전성을 명확하게 평가하는 것이 처분장의 장기건전성 평가를 위해 반드시 필요하다. 처분선진국들에서는 주로 실내 및 공학규모 실험이 수행되고 있으며 일부 전산 모델 개발이 진행되고 있는 상황이지만 실험에서 관측된 현상들을 복합적으로 모사할 수 있는 전산 모델은 개발되지 않았다. 국내에서도 다양한 침식/파이핑 시나리오에 대한 연구나 열-수리-역학-화학적 복합거동을 고려한 연구는 수행되지 않았다. 본 기술 보고에서는 현재까지 수행된 국내외 벤토나이트 침식 및 파이핑 연구와 이들이 주로 고려한 영향인자를 파악하였다. 실험값을 검증하기 위해 제안된 전산 모델들을 소개하고 향후 완충재 침식 및 파이핑 현상 규명을 위한 연구 수행 방향에 대해 정리하였다. 본 논문에서 검토한 다양한 시험 및 모델링 사례를 바탕으로 향후 국내 심층처분장환경을 고려한 압축 벤토나이트 완충재 침식 및 파이핑 관련 연구가 필요하다고 판단된다.

The deep geological repository for high-level radioactive waste disposal is a multi barrier system comprised of engineered barriers and a natural barrier. The long-term integrity of the deep geological repository is affected by the coupled interactions between the individual barrier components. Erosion and piping phenomena in the compacted bentonite buffer due to buffer-rock interactions results in the removal of bentonite particles via groundwater flow and can negatively impact the integrity and performance of the buffer. Rapid groundwater inflow at the early stages of disposal can lead to piping in the bentonite buffer due to the buildup of pore water pressure. The physiochemical processes between the bentonite buffer and groundwater lead to bentonite swelling and gelation, resulting in bentonite erosion from the buffer surface. Hence, the evaluation of erosion and piping occurrence and its effects on the integrity of the bentonite buffer is crucial in determining the long-term integrity of the deep geological repository. Previous studies on bentonite erosion and piping failed to consider the complex coupled thermo-hydro-mechanical-chemical behavior of bentonite-groundwater interactions and lacked a comprehensive model that can consider the complex phenomena observed from the experimental tests. In this technical note, previous studies on the mechanisms, lab-scale experiments and numerical modeling of bentonite buffer erosion and piping are introduced, and the future expected challenges in the investigation of bentonite buffer erosion and piping are summarized.

키워드

과제정보

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원(2021M2E1A1085193)과 고준위폐기물관리차세대혁신기술개발사업의 지원(2021M2E3A2041312)을 받아 수행된 연구사업입니다.

참고문헌

  1. Abend, S., and Lagaly, G., 2000, Sol-gel transitions of sodium montmorillonite dispersions, Applied clay science 16(3-4), 201-227. https://doi.org/10.1016/S0169-1317(99)00040-X
  2. Alonso, E.E., Gens, A., and Josa, A., 1990, A constitutive model for partially saturated soils, Geotechnique, 40(3), 405-430. https://doi.org/10.1680/geot.1990.40.3.405
  3. Alonso, E.E., Vaunat, J., and Gens, A., 1999, Modelling the mechanical behaviour of expansive clays, Engineering Geology, 54(1-2), 173-183. https://doi.org/10.1016/S0013-7952(99)00079-4
  4. Alonso, U., Missana, T., Gutierrez, M.G., Morejon, J., Mingarro, M., and Fernandez, A.M., 2019, CIEMAT studies within POSKBAR project, Swedish Nuclear Fuel and Waste Management Company, TR 19-08, Svensk Karnbranslehantering AB.
  5. Amadei, B. and Stephansson, O., 1997, Rock Stress and Its Measurement, Chapman and Hall.
  6. ASTM D4647/D4647M-13, Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test.
  7. Baik, M.H., Lee, J.O., and Cho, W.J., 2005, A Study on the Erosion of Bentonite Buffer Material of the Engineered Barrier System, KAERI technical report, KAERI/TR-3061/2005, Korea Atomic Energy Research Institute.
  8. Birgersson, M., Borgesson, L., Hedstrom, M., Karnland, O., and Nilsson, U., 2009, Bentonite erosion. Final report, Swedish Nuclear Fuel and Waste Management Company, TR 09-34, Svensk Karnbranslehantering AB.
  9. Borgesson, L. and Sanden, T., 2006, Piping and erosion in buffer and backfill materials. Current knowledge, Swedish Nuclear Fuel and Waste Management Company, R 06-80, Svensk Karnbranslehantering AB.
  10. Borgesson, L., Hedstrom, M., Birgersson, M., and Karnland, O., 2018, Bentonite swelling into fractures at conditions above the critical coagulation concentration, Swedish Nuclear Fuel and Waste Management Company, TR 17-11, Svensk Karnbranslehantering AB.
  11. Borgesson, L., Sanden, T., Falth, B., Akesson, M., and Lindgren, E., 2005, Studies of buffers behaviour in KBS-3H concept. Work during 2002-2004, Swedish Nuclear Fuel and Waste Management Company, R 05-50, Svensk Karnbranslehantering AB.
  12. Garcia-Garcia, S., Wold, S., and Jonsson, M., 2007, Kinetic determination of critical coagulation concentrations for sodium-and calcium-montmorillonite colloids in NaCl and CaCl2 aqueous solutions, Journal of colloid and interface science, 315(2), 512-519. https://doi.org/10.1016/j.jcis.2007.07.002
  13. Goh, R., Leong, Y.K., and Lehane, B., 2011, Bentonite slurries-zeta potential, yield stress, adsorbed additive and time-dependent behaviour, Rheologica acta, 50(1), 29-38, 2011. https://doi.org/10.1007/s00397-010-0498-x
  14. Hedstrom, M., Hansen, E.E., and Nilsson, U., 2016, Montmorillonite phase behaviour, Swedish Nuclear Fuel and Waste Management Company, TR 15-07, Svensk Karnbranslehantering AB.
  15. Ishii, T., Kawakubo, M., Kobayashi, I., and Niibori, Y., 2020, Experimental approach for understanding the dynamic behaviors of bentonite buffer piping erosion, Mechanical Engineering Journal, 7(3), 19-00469.
  16. Islam, M. N., Bunger, A.P., Huerta, N., and Dilmore, R., 2019, Bentonite extrusion into near-borehole fracture, Geosciences, 9(12), 495. https://doi.org/10.3390/geosciences9120495
  17. Jansson, M., 2009, Bentonite erosion. Laboratory studies, Swedish Nuclear Fuel and Waste Management Company, TR 09-33, Svensk Karnbranslehantering AB.
  18. Karnland, O., and Birgersson, M., 2006, Montmorillonite stability With special respect to KBS-3 conditions, Swedish Nuclear Fuel and Waste Management Company, TR 06-11, Svensk Karnbranslehantering AB.
  19. Karnland, O., Birgersson, M., and Hedstrom, M., 2011, Selectivity coefficient for Ca/Na ion exchange in highly compacted bentonite, Physics and Chemistry of the Earth, 36, 1554-1558. https://doi.org/10.1016/j.pce.2011.07.023
  20. Kim, J., Ryoo, R., Lee, J., Song, D., Lee, Y.J., and Jun, H.B., 2016, Study on major mineral distribution characteristics in groundwater in South Korea, Journal of Korean Society of Environmental Engineers, 38(10), 566-573. https://doi.org/10.4491/KSEE.2016.38.10.566
  21. Kim, M.S., Jeon, J.S., Kim, M.J., Lee, J.W., and Lee, S.R., 2019, A multi-objective optimization of initial conditions in a radioactive wasterepository by numerical thermo-hydro-mechanical modeling, Computers and Geotechnics, 114, 103-106.
  22. Kobayashi, A., Yamamoto, K., and Momoki, S., 2008, Characteristics of strength for hydraulic fracturing of buffer material, Soils and foundations, 48(4), 467-477. https://doi.org/10.3208/sandf.48.467
  23. Lagaly, G. and Ziesmer, S., 2003, Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions, Advances in colloid and interface science, 100, 105-128. https://doi.org/10.1016/S0001-8686(02)00064-7
  24. Lavina, M., Idiart, A., Molinero, J., and Casas, G., 2018, Development, testing and application of alternative models for bentonite expansion and erosion, Swedish Nuclear Fuel and Waste Management Company, TR 17-13, Svensk Karnbranslehantering AB.
  25. Lee, C., Cho, W.J., Kim, J. S., and Kim, G.Y., 2020, Penetration of Compacted Bentonite into the Discontinuity in the Excavation Damaged Zone of Deposition Hole in the Geological Repository, Tunnel and Underground Space, 30(3), 193-213. https://doi.org/10.7474/TUS.2020.30.3.193
  26. Lee, J.O., Lee, M., and Choi, H., 2015, Establishing the Concept of Buffer for a High-level Radioactive Waste Repository: An Approach, Journal of Nuclear Fuel Cycle and Waste Technology, 13(4), 283-293. https://doi.org/10.7733/JNFCWT.2015.13.4.283
  27. Liu, L. and Neretnieks, I., 2006, Physical and chemical stability of the bentonite buffer, Swedish Nuclear Fuel and Waste Management Company, R 06-103, Svensk Karnbranslehantering AB.
  28. Liu, L., 2013, Prediction of swelling pressures of different types of bentonite in dilute solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434, 303-318. https://doi.org/10.1016/j.colsurfa.2013.05.068
  29. Liu, L., Moreno, L., and Neretnieks, I., 2009, A dynamic force balance model for colloidal expansion and its DLVO-based application, Langmuir, 25(2), 679-687. https://doi.org/10.1021/la8026573
  30. Madsen, F.T. and Muller-Vonmoos, M., 1989, The swelling behaviour of clays, Applied Clay Science, 4(2), 143-156. https://doi.org/10.1016/0169-1317(89)90005-7
  31. Moreno, L., Liu, L., and Neretnieks, I., 2011, Erosion of sodium bentonite by flow and colloid diffusion, Physics and Chemistry of the Earth, Parts A/B/C, 36(17-18), 1600-1606. https://doi.org/10.1016/j.pce.2011.07.034
  32. Navarro, V., Asensio, L., Yustres, A., De la Morena, G., and Pintado, X., 2016, Swelling and mechanical erosion of MX-80 bentonite: Pinhole test simulation, Engineering Geology, 202, 99-113. https://doi.org/10.1016/j.enggeo.2016.01.005
  33. Navarro, V., Asensio, L., Yustres, A., Pintado, X., and Alonso, J., 2014, An elastoplastic model of bentonite free swelling, Engineering Geology, 181, 190-201. https://doi.org/10.1016/j.enggeo.2014.07.014
  34. Navarro, V., Yustres, A., Asensio, L., De la Morena, G., Gonzalez-Arteaga, J., Laurila, T., and Pintado, X., 2017, Modelling of compacted bentonite swelling accounting for salinity effects, Engineering Geology, 223, 48-58. https://doi.org/10.1016/j.enggeo.2017.04.016
  35. Neretnieks, I., and Moreno, L., 2018a, Revisiting bentonite erosion understanding and modelling based on the BELBaR project findings, Swedish Nuclear Fuel and Waste Management Company, TR 17-12, Svensk Karnbranslehantering AB.
  36. Neretnieks, I., and Moreno, L., 2018b, Some Mechanisms that Influence Bentonite Erosion in a KBS-3 Repository-an Exploratory Study, Swedish Nuclear Fuel and Waste Management Company, TR 18-13, Svensk Karnbranslehantering AB.
  37. Neretnieks, I., Liu, L., and Moreno, L., 2009, Mechanisms and models for bentonite erosion, Swedish Nuclear Fuel and Waste Management Company, TR 09-35, Svensk Karnbranslehantering AB.
  38. Neretnieks, I., Moreno, L., and Liu, L., 2017, Clay erosion: impact of flocculation and gravitation, Swedish Nuclear Fuel and Waste Management Company, TR 16-11, Svensk Karnbranslehantering AB.
  39. Pintado, X., Adesola, F., and Turtiainen, M., 2013, Downscaled tests on buffer behaviour, Posiva Oy, No. POSIVA-WR-12-100.
  40. Pont, A., Coene, E., and Idiart, A., 2020, Bentonite erosion project. Preliminary study for the numerical simulation of bentonite erosion, Swedish Nuclear Fuel and Waste Management Company, P 20-16, Svensk Karnbranslehantering AB.
  41. Pusch, R., 1983, Stability of Bentonite Gels in Crystalline Rocks: Physical Aspects, Swedish Nuclear Fuel and Waste Management Company, TR 83-04, Svensk Karnbranslehantering AB.
  42. Reid, C., Lunn, R., El Mountassir, G., and Tarantino, A., 2015, A mechanism for bentonite buffer erosion in a fracture with a naturally varying aperture, Mineralogical Magazine, 79(6), 1485-1494. https://doi.org/10.1180/minmag.2015.079.6.23
  43. Richards, T., 2010, Particle clogging in porous media. Filtration of a smectite solution, Swedish Nuclear Fuel and Waste Management Company, TR 10-22, Svensk Karnbranslehantering AB.
  44. Sanden, T., Borgesson, L., Dueck, A., Goudarzi, R., and Lonnqvist, M., 2008, Deep repository - Engineered barrier system. Erosion and sealing processes in tunnel backfill materials investigated in laboratory, Swedish Nuclear Fuel and Waste Management Company, R 08-135, Svensk Karnbranslehantering AB.
  45. Sane, P., Laurila, T., Olin, M., and Koskinen, K., 2013, Current status of mechanical erosion studies of bentonite buffer, Posiva Oy, No. POSIVA-12-45.
  46. Schatz, T., Alonso, U., Missana, T., Reid, C., Friedrich, F., Rinderknecht, F., and Koskinen, K., 2016, Benchmarking Exercise of Clay Erosion in Artificial Fracture Tests, BELBaR Final Workshop, 3rd February 2016, Berlin, Germany.
  47. Schatz, T., Kanerva, N., Martikainen, J., Sane, P., Olin, M., Seppala, A., and Koskinen, K., 2013, Buffer erosion in dilute groundwater, Posiva Oy, No. POSIVA-12-44.
  48. Sellin, P., and Sundman, D., 2011, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide transport, EURATOM Project presentation.
  49. Suzuki, K., Asano, H., Yahagi, R., Kobayashi, I., Sellin, P., Svemar, C., and Holmqvist, M., 2013, Experimental investigations of piping phenomena in bentonite-based buffer materials for an HLW repository, Clay Minerals, 48(2), 363-382. https://doi.org/10.1180/claymin.2013.048.2.15
  50. Vilks, P., and Miller, N.H., 2010, Laboratory bentonite erosion experiments in a synthetic and a natural fracture, Nuclear Waste Management Organization, TR-2010-16.
  51. Wang, Z., Zhao, B., and Royal, A.C.D., 2017, Investigation of Erosion of Cement-Bentonite via Piping, Advances in Materials Science and Engineering, Vol. 2017, 1762042.
  52. Yoon, S., Jeon, J.S., Go, G.H., and Kim, G.Y., 2020, An Evaluation of Soil-Water Characteristic Curve Model for Compacted Bentonite Considering Temperature Variation. Journal of the Korean Geotechnical Society, 36(10), 33-39. https://doi.org/10.7843/KGS.2020.36.10.33