DOI QR코드

DOI QR Code

Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives

  • Sujeong Je (Division of Biotechnology, The Catholic University of Korea) ;
  • Yasuyo Yamaoka (Division of Biotechnology, The Catholic University of Korea)
  • Received : 2022.09.07
  • Accepted : 2022.10.17
  • Published : 2022.11.28

Abstract

Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.

Keywords

Acknowledgement

Y.Y. was supported by the NRF grant (2022R1C1C1008690 and 2022M3A9I3018121) funded by the Korean government (Ministry of Science and ICT) and the Catholic University of Korea, Research Fund, 2022. We thank Yuree Lee (School of Biological Sciences, Seoul National University, Korea) for kindly providing the fluorescence microscope to capture C. vulgaris.

References

  1. Morales M, Helias A, Bernard O. 2019. Optimal integration of microalgae production with photovoltaic panels: environmental impacts and energy balance. Biotechnol. Biofuels 12: 239-255. https://doi.org/10.1186/s13068-019-1579-4
  2. Tan CH, Nagarajan D, Show PL, Chang J-S. 2019. Biodiesel from microalgae, pp. 601-628. Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, Ed. Elsevier,
  3. Chen Y, Xu C, Vaidyanathan S. 2020. Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production. Appl. Energy 261: 114420.
  4. Cooney M, Young G, Nagle N. 2009. Extraction of bio-oils from microalgae. Sep. Purif. Rev. 38: 291-325. https://doi.org/10.1080/15422110903327919
  5. Sajjadi B, Chen W-Y, Raman AAA, Ibrahim S. 2018. Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renewable Sustainable Energy Rev. 97: 200-232. https://doi.org/10.1016/j.rser.2018.07.050
  6. Debowski M, Zielinski M, Kazimierowicz J, Kujawska N, Talbierz S. 2020. Microalgae cultivation technologies as an opportunity for bioenergetic system development-advantages and limitations. Sustainability 12: 9980.
  7. Dassey A, Theegala C. 2013. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour. Technol. 128: 241-245. https://doi.org/10.1016/j.biortech.2012.10.061
  8. Farooq W, Lee Y-C, Han J-I, Darpito CH, Choi M, Yang J-W. 2013. Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem. 15: 749-755. https://doi.org/10.1039/c3gc36767c
  9. Jonker JGG, Faaij APC. 2013. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Appl. Energy 102: 461-475. https://doi.org/10.1016/j.apenergy.2012.07.053
  10. Bock C, Krienitz L, Proeschold T. 2011. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea 11: 293-312. https://doi.org/10.5507/fot.2011.028
  11. Yamamoto M, Fujishita M, Hirata A, Kawano S. 2004. Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Resr. 117: 257-264.
  12. Morimura Y, Tamiya N. 1954. Preliminary experiments in the use of Chlorella as human food. Food Technol. 8: 179-182.
  13. Harder R, von Witsch H. 1942. Weitere Untersuchungen uber die Veranderung der photoperiodischen Reaktion von Kalanchoe Blossfeldiana mit zunehmendem Alter der Pflanzen. Planta 32: 547-557. https://doi.org/10.1007/BF01917982
  14. Cai T, Park SY, Li Y. 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable Sustainable Energy Rev. 19: 360-369. https://doi.org/10.1016/j.rser.2012.11.030
  15. Asadi P, Rad HA, Qaderi F. 2019. Comparison of Chlorella vulgaris and Chlorella sorokiniana pa. 91 in post treatment of dairy wastewater treatment plant effluents. Environ. Sci. Pollut. Res. 26: 29473-29489. https://doi.org/10.1007/s11356-019-06051-8
  16. Nawkarkar P, Singh AK, Abdin MZ, Kumar S. 2019. Life cycle assessment of Chlorella species producing biodiesel and remediating wastewater. J. Biosci. 44: 89.
  17. Barsanti L, Gualtieri P. 2018. Is exploitation of microalgae economically and energetically sustainable? Algal Res. 31: 107-115. https://doi.org/10.1016/j.algal.2018.02.001
  18. Cui Y, Thomas-Hall SR, Schenk PM. 2019. Phaeodactylum tricornutum microalgae as a rich source of omega-3 oil: progress in lipid induction techniques towards industry adoption. Food Chem. 297: 124937.
  19. Shrestha N, Dandinpet KK, Schneegurt MA. 2020. Effects of nitrogen and phosphorus limitation on lipid accumulation by Chlorella kessleri str. UTEX 263 grown in darkness. J. Appl. Phycol. 32: 2795-2805. https://doi.org/10.1007/s10811-020-02144-x
  20. Liu T, Chen Z, Xiao Y, Yuan M, Zhou C, Liu G, et al. 2022. Biochemical and morphological changes triggered by nitrogen stress in the oleaginous microalga Chlorella vulgaris. Microorganisms 10: 566-581. https://doi.org/10.3390/microorganisms10030566
  21. Almutairi AW, El-Sayed AE-KB, Reda MM. 2021. Evaluation of high salinity adaptation for lipid bio-accumulation in the green microalga Chlorella vulgaris. Saudi J. Biol. Sci. 28: 3981-3988. https://doi.org/10.1016/j.sjbs.2021.04.007
  22. Jiang L, Zhang L, Nie C, Pei H. 2018. Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste. Biotechnol. Biofuels 11: 68.
  23. Wang F, Liu T, Guan W, Xu L, Huo S, Ma A, et al. 2021. Development of a Strategy for Enhancing the Biomass Growth and Lipid Accumulation of Chlorella sp. UJ-3 Using Magnetic Fe3O4 Nanoparticles. Nanomaterials 11: 2802.
  24. Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F. 2011. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour. Technol. 102: 106-110. https://doi.org/10.1016/j.biortech.2010.06.017
  25. Yang J, Li X, Hu H, Zhang X, Yu Y, Chen Y. 2011. Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl. Energy 88: 3295-3299. https://doi.org/10.1016/j.apenergy.2010.11.029
  26. Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH. 2012. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour. Technol. 124: 217-226. https://doi.org/10.1016/j.biortech.2012.08.003
  27. Wang Y, Rischer H, Eriksen NT, Wiebe MG. 2013. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Bioresour. Technol. 144: 608-614. https://doi.org/10.1016/j.biortech.2013.07.027
  28. Amaral MdS, Loures CCA, Naves FL, Baeta B, Silva M, Prata A. 2020. Evaluation of cell growth performance of microalgae Chlorella minutissima using an internal light integrated photobioreactor. J. Environ. Chem. Eng. 8: 104200.
  29. Singh NK, Naira VR, Maiti SK. 2019. Production of biodiesel by autotrophic Chlorella pyrenoidosa in a sintered disc lab scale bubble column photobioreactor under natural sunlight. Prep. Biochem. Biotechnol. 49: 255-269. https://doi.org/10.1080/10826068.2018.1536991
  30. Ziganshina EE, Bulynina SS, Ziganshin AM. 2020. Comparison of the photoautotrophic growth regimens of Chlorella sorokiniana in a photobioreactor for enhanced biomass productivity. Biology 9: 169-181. https://doi.org/10.3390/biology9070169
  31. Verma R, Kumari KK, Srivastava A, Kumar A. 2020. Photoautotrophic, mixotrophic, and heterotrophic culture media optimization for enhanced microalgae production. J. Environ. Chem. Eng. 8: 104149.
  32. Morowvat MH, Ghasemi Y. 2019. Maximizing biomass and lipid production in heterotrophic culture of Chlorella vulgaris: technoeconomic assessment. Recent Pat. Food Nutr. Agric. 10: 115-123. https://doi.org/10.2174/2212798410666180911100034
  33. Kim HS, Park W-K, Lee B, Seon G, Suh WI, Moon M, et al. 2019. Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation. Sci. Rpe. 9: 19383.
  34. Ruiz J, Wijffels RH, Dominguez M, Barbosa MJ. 2022. Heterotrophic vs autotrophic production of microalgae: bringing some light into the everlasting cost controversy. Algal Res. 64: 102698.
  35. Perez-Garcia O, Escalante FM, De-Bashan LE, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45: 11-36. https://doi.org/10.1016/j.watres.2010.08.037
  36. Cheirsilp B, Torpee S. 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110: 510-516. https://doi.org/10.1016/j.biortech.2012.01.125
  37. Sun Y, Liu J, Xie T, Xiong X, Liu W, Liang B, et al. 2014. Enhanced lipid accumulation by Chlorella vulgaris in a two-stage fed-batch culture with glycerol. Energy Fuels 28: 3172-3177. https://doi.org/10.1021/ef5000326
  38. Yun H-S, Kim Y-S, Yoon H-S. 2021. Effect of different cultivation modes (Photoautotrophic, mixotrophic, and heterotrophic) on the growth of Chlorella sp. and biocompositions. Front. Bioeng. Biotechnol. 9: 774143.
  39. Ward VC, Rehmann L. 2019. Fast media optimization for mixotrophic cultivation of Chlorella vulgaris. Sci. Rep. 9: 19262.
  40. Leon-Vaz A, Leon R, Diaz-Santos E, Vigara J, Raposo S. 2019. Using agro-industrial wastes for mixotrophic growth and lipids production by the green microalga Chlorella sorokiniana. New Biotechnol. 51: 31-38. https://doi.org/10.1016/j.nbt.2019.02.001
  41. Liu L, Zhao Y, Jiang X, Wang X, Liang W. 2018. Lipid accumulation of Chlorella pyrenoidosa under mixotrophic cultivation using acetate and ammonium. Bioresour. Technol. 262: 342-346. https://doi.org/10.1016/j.biortech.2018.04.092
  42. Cabanelas ITD, Arbib Z, Chinalia FA, Souza CO, Perales JA, Almeida PF, et al. 2013. From waste to energy: microalgae production in wastewater and glycerol. Appl. Energy 109: 283-290. https://doi.org/10.1016/j.apenergy.2013.04.023
  43. Heredia-Arroyo T, Wei W, Ruan R, Hu B. 2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35: 2245-2253. https://doi.org/10.1016/j.biombioe.2011.02.036
  44. Rai MP, Nigam S, Sharma R. 2013. Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy 58: 251-257. https://doi.org/10.1016/j.biombioe.2013.08.038
  45. Rana MS, Prajapati SK. 2021. Stimulating effects of glycerol on the growth, phycoremediation and biofuel potential of Chlorella pyrenoidosa cultivated in wastewater. Environ. Technol. Innov. 24: 102082.
  46. Chai S, Shi J, Huang T, Guo Y, Wei J, Guo M, et al. 2018. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS One 13: e0199873.
  47. Lacroux J, Seira J, Trably E, Bernet N, Steyer JP, van Lis R. 2021. Mixotrophic growth of Chlorella sorokiniana on acetate and butyrate: interplay between substrate, C:N ratio and pH. Front. Microbiol. 12: 703614.
  48. Perez-Garcia O, Bashan Y, Esther Puente M. 2011. Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella Vulgaris. J. Phycol. 47: 190-199. https://doi.org/10.1111/j.1529-8817.2010.00934.x
  49. Kumar K, Das D. 2012. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresour. Technol. 116: 307-313. https://doi.org/10.1016/j.biortech.2012.03.074
  50. Prathima Devi M, Swamy YV, Venkata Mohan S. 2013. Nutritional mode influences lipid accumulation in microalgae with the function of carbon sequestration and nutrient supplementation. Bioresour. Technol. 142: 278-286. https://doi.org/10.1016/j.biortech.2013.05.001
  51. Huang A, Sun L, Wu S, Liu C, Zhao P, Xie X, et al. 2017. Utilization of glucose and acetate by Chlorella and the effect of multiple factors on cell composition. J. Appl. Phycol. 29: 23-33. https://doi.org/10.1007/s10811-016-0920-6
  52. Qiu R, Gao S, Lopez PA, Ogden KL. 2017. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res. 28: 192-199. https://doi.org/10.1016/j.algal.2017.11.004
  53. Xie Z, Lin W, Liu J, Luo J. 2020. Mixotrophic cultivation of Chlorella for biomass production by using pH-stat culture medium: glucose-acetate-phosphorus (GAP). Bioresour. Technol. 313: 123506.
  54. Li X, Song M, Yu Z, Wang C, Sun J, Su K, et al. 2022. Comparison of heterotrophic and mixotrophic Chlorella pyrenoidosa cultivation for the growth and lipid accumulation through acetic acid as a carbon source. J. Environ. Chem. Eng. 10: 107054.
  55. Canelli G, Neutsch L, Carpine R, Tevere S, Giuffrida F, Rohfritsch Z, et al. 2020. Chlorella vulgaris in a heterotrophic bioprocess: study of the lipid bioaccessibility and oxidative stability. Algal Res. 45: 101754.
  56. Schuler LM, Schulze PS, Pereira H, Barreira L, Leon R, Varela J. 2017. Trends and strategies to enhance triacylglycerols and highvalue compounds in microalgae. Algal Res. 25: 263-273. https://doi.org/10.1016/j.algal.2017.05.025
  57. Meticulous Research. Chlorella Market by Technology (Open Pond), by Product Type (Extract, Capsules) by Source (Chlorella Vulgaris, Chlorella Pyrenoidosa or Sorokiniana) by Application (Nutraceutical, Food and Beverages, Animal Feed), Geography - Global Forecast to 2028. Meticulous Research. 2021. Avaliable online: https://www.meticulousresearch.com/product/chlorellamarket-5162
  58. Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. 2015. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci. 6: 899.
  59. Wu C, Xiong W, Dai J, Wu Q. 2016. Kinetic flux profiling dissects nitrogen utilization pathways in the oleaginous green alga Chlorella protothecoides. J. Phycol. 52: 116-124. https://doi.org/10.1111/jpy.12374
  60. Terrado R, Monier A, Edgar R, Lovejoy C. 2015. Diversity of nitrogen assimilation pathways among microbial photosynthetic eukaryotes. J. Phycol. 51: 490-506. https://doi.org/10.1111/jpy.12292
  61. Drath M, Kloft N, Batschauer A, Marin K, Novak J, Forchhammer K. 2008. Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol. 147: 206-215. https://doi.org/10.1104/pp.108.117218
  62. Markou G, Vandamme D, Muylaert K. 2014. Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH. Bioresour. Technol. 166: 259-265. https://doi.org/10.1016/j.biortech.2014.05.040
  63. Pozzobon V, Cui N, Moreaud A, Michiels E, Levasseur W. 2021. Nitrate and nitrite as mixed source of nitrogen for Chlorella vulgaris: growth, nitrogen uptake and pigment contents. Bioresour. Technol. 330: 124995.
  64. Mutlu YB, Isck O, Uslu L, Koc K, Durmaz Y. 2011. The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella vulgaris (Chlorophyceae). Afr. J. Biotechnol. 10: 453-456.
  65. Li S, Zheng X, Chen Y, Song C, Lei Z, Zhang Z. 2020. Nitrite removal with potential value-added ingredients accumulation via Chlorella sp. L38. Bioresour. Technol. 313: 123743.
  66. Zhan J, Hong Y, Hu H. 2016. Effects of nitrogen sources and C/N ratios on the lipid-producing potential of Chlorella sp. HQ. J. Microbiol. Biotechnol. 26: 1290-1302. https://doi.org/10.4014/jmb.1512.12074
  67. Schnurr PJ, Espie GS, Allen DG. 2013. Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour. Technol. 136: 337-344. https://doi.org/10.1016/j.biortech.2013.03.036
  68. Davis E, Dedrick J, French C, Milner H, Myers J, Smith J, et al. 1953. Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington department of plant biology. Algal Culture Lab. Pilot Plant 105-153.
  69. Feng P, Xu Z, Qin L, Alam MA, Wang Z, Zhu S. 2020. Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of Chlorella sp. GN1 outdoors. Bioresour. Technol. 301: 122762.
  70. Nayak M, Suh WI, Chang YK, Lee B. 2019. Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresour. Technol. 276: 110-118. https://doi.org/10.1016/j.biortech.2018.12.111
  71. Salbitani G, Carfagna S. 2021. Ammonium utilization in microalgae: a sustainable method for wastewater treatment. Sustainability 13: 956.
  72. Azov Y, Goldman JC. 1982. Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl. Environ. Microbiol. 43: 735-739. https://doi.org/10.1128/aem.43.4.735-739.1982
  73. Dai GZ, Qiu BS, Forchhammer K. 2014. Ammonium tolerance in the cyanobacterium Synechocystis sp. strain PCC 6803 and the role of the psbA multigene family. Plant Cell Environ. 37: 840-851. https://doi.org/10.1111/pce.12202
  74. Wang J, Zhou W, Chen H, Zhan J, He C, Wang Q. 2019. Ammonium nitrogen tolerant Chlorella strain screening and its damaging effects on photosynthesis. Front. Microbiol. 9: 3250.
  75. Tam N, Wong Y. 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour. Technol. 57: 45-50. https://doi.org/10.1016/0960-8524(96)00045-4
  76. Ziganshina EE, Bulynina SS, Ziganshin AM. 2022. Growth characteristics of Chlorella sorokiniana in a photobioreactor during the utilization of different forms of nitrogen at various temperatures. Plants 11: 1086.
  77. Rehman A, Shakoori AR. 2001. Heavy metal resistance Chlorella spp., isolated from tannery effluents, and their role in remediation of hexavalent chromium in industrial waste water. Bull. Environ. Contam. Toxicol. 66: 542-547. https://doi.org/10.1007/s00128-001-0041-y
  78. Collos Y, Harrison PJ. 2014. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar. Pollut. Bull. 80: 8-23. https://doi.org/10.1016/j.marpolbul.2014.01.006
  79. Kamako S, Hoshina R, Ueno S, Imamura N. 2005. Establishment of axenic endosymbiotic strains of Japanese Paramecium bursaria and the utilization of carbohydrate and nitrogen compounds by the isolated algae. Eur. J. Protistol. 41: 193-202. https://doi.org/10.1016/j.ejop.2005.04.001
  80. Arora N, Philippidis GP. 2021. Insights into the physiology of Chlorella vulgaris cultivated in sweet sorghum bagasse hydrolysate for sustainable algal biomass and lipid production. Sci. Rep. 11: 6779.
  81. Wang X, Zhang M-M, Sun Z, Liu S-F, Qin Z-H, Mou J-H, et al. 2020. Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. J. Hazard. Mater. 400: 123258.
  82. Cheah WY, Show PL, Yap YJ, Mohd Zaid HF, Lam MK, Lim JW, et al. 2020. Enhancing microalga Chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor. Bioengineered 11: 61-69. https://doi.org/10.1080/21655979.2019.1704536
  83. Chen J-h, Liu L, Lim P-E, Wei D. 2019. Effects of sugarcane bagasse hydrolysate (SCBH) on cell growth and fatty acid accumulation of heterotrophic Chlorella protothecoides. Bioprocess Biosyst. Eng. 42: 1129-1142. https://doi.org/10.1007/s00449-019-02110-z
  84. Vyas S, Patel A, Risse EN, Krikigianni E, Rova U, Christakopoulos P, et al. 2022. Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation. Bioresour. Technol. 359: 127494.
  85. Jain D, Ghonse SS, Trivedi T, Fernandes GL, Menezes LD, Damare SR, et al. 2019. CO2 fixation and production of biodiesel by Chlorella vulgaris NIOCCV under mixotrophic cultivation. Bioresour. Technol. 273: 672-676. https://doi.org/10.1016/j.biortech.2018.09.148
  86. Gao F, Peng Y-Y, Li C, Yang G-J, Deng Y-B, Xue B, et al. 2018. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater. Sci. Total Environ. 640: 943-953.
  87. Saranya D, Shanthakumar S. 2019. Green microalgae for combined sewage and tannery effluent treatment: performance and lipid accumulation potential. J. Environ. Manag. 241: 167-178. https://doi.org/10.1016/j.jenvman.2019.04.031
  88. Azam R, Kothari R, Singh HM, Ahmad S, Sari A, Tyagi V. 2022. Cultivation of two Chlorella species in open sewage contaminated channel wastewater for biomass and biochemical profiles: comparative lab-scale approach. J. Biotechnol. 344: 24-31. https://doi.org/10.1016/j.jbiotec.2021.11.006
  89. Huo S, Kong M, Zhu F, Zou B, Wang F, Xu L, et al. 2018. Mixotrophic Chlorella sp. UJ-3 cultivation in the typical anaerobic fermentation effluents. Bioresour. Technol. 249: 219-225. https://doi.org/10.1016/j.biortech.2017.10.042
  90. Xie D, Ji X, Zhou Y, Dai J, He Y, Sun H, et al. 2022. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification. Bioresour. Technol. 349: 126886.
  91. Zhu L-D, Li Z-H, Guo D-B, Huang F, Nugroho Y, Xia K. 2017. Cultivation of Chlorella sp. with livestock waste compost for lipid production. Bioresour. Technol. 223: 296-300. https://doi.org/10.1016/j.biortech.2016.09.094
  92. Farabegoli G, Chiavola A, Rolle E. 2009. The Biological Aerated Filter (BAF) as alternative treatment for domestic sewage. Optimization of plant performance. J. Hazard. Mater. 171: 1126-1132. https://doi.org/10.1016/j.jhazmat.2009.06.128
  93. Yang Y, Chen Z, Wang X, Zheng L, Gu X. 2017. Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment. Bioresour. Technol. 241: 473-481. https://doi.org/10.1016/j.biortech.2017.05.151
  94. Qin L, Wang B, Feng P, Cao Y, Wang Z, Zhu S. 2022. Treatment and resource utilization of dairy liquid digestate by nitrification of biological aerated filter coupled with assimilation of Chlorella pyrenoidosa. Environ. Sci. Pollut. Res. 29: 3406-3416. https://doi.org/10.1007/s11356-021-15903-1
  95. Zou Y, Zeng Q, Li H, Liu H, Lu Q. 2021. Emerging technologies of algae-based wastewater remediation for bio-fertilizer production: a promising pathway to sustainable agriculture. J. Chem. Technol. Biotechnol. 96: 551-563. https://doi.org/10.1002/jctb.6602
  96. Ratha S, Prasanna R. 2012. Bioprospecting microalgae as potential sources of "Green Energy"?challenges and perspectives. Appl. Biochem. Microbiol. 48: 109-125. https://doi.org/10.1134/S000368381202010X
  97. Yan H, Lu R, Liu Y, Cui X, Wang Y, Yu Z, et al. 2022. Development of microalgae-bacteria symbiosis system for enhanced treatment of biogas slurry. Bioresour. Technol. 354: 127187.
  98. Shen Y, Gao J, Li L. 2017. Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: microorganism growth and nutrients removal. Bioresour. Technol. 243: 905-913. https://doi.org/10.1016/j.biortech.2017.07.041
  99. Liu X-Y, Hong Y, Zhai Q-Y, Zhao G-P, Zhang H-K, Wang Q. 2022. Performance and mechanism of Chlorella in swine wastewater treatment: roles of nitrogen-phosphorus ratio adjustment and indigenous bacteria. Bioresour. Technol. 358: 127402.
  100. Wieczorek N, Kucuker MA, Kuchta K. 2015. Microalgae-bacteria flocs (MaB-Flocs) as a substrate for fermentative biogas production. Bioresour. Technol. 194: 130-136. https://doi.org/10.1016/j.biortech.2015.06.104
  101. Kim D-H, Yun H-S, Kim Y-S, Kim J-G. 2020. Effects of co-culture on improved productivity and bioresource for microalgal biomass using the floc-forming bacteria Melaminivora jejuensis. Front. Bioeng. Biotechnol. 8: 588210.
  102. Zhang W, Zhang P, Sun H, Chen M, Lu S, Li P. 2014. Effects of various organic carbon sources on the growth and biochemical composition of Chlorella pyrenoidosa. Bioresour. Technol. 173: 52-58. https://doi.org/10.1016/j.biortech.2014.09.084
  103. Wang S, Wu Y, Wang X. 2016. Heterotrophic cultivation of Chlorella pyrenoidosa using sucrose as the sole carbon source by coculture with Rhodotorula glutinis. Bioresou. Technol. 220: 615-620. https://doi.org/10.1016/j.biortech.2016.09.010
  104. Kilian SG, Sutherland FCW, Meyer PS, du Preez JC. 1996. Transport-limited sucrose utilization and neokestose production by Phaffia rhodozyma. Biotechnol. Lett. 18: 975-980. https://doi.org/10.1007/BF00154633
  105. Wang S-K, Wang X, Tao H-H, Sun X-S, Tian Y-T. 2018. Heterotrophic culture of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with immobilized yeast. Bioresour. Technol. 249: 425-430. https://doi.org/10.1016/j.biortech.2017.10.049
  106. Tian Y-T, Wang X, Cui Y-H, Wang S-K. 2020. A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source. Bioprocess Biosyst. Eng. 43: 2243-2252. https://doi.org/10.1007/s00449-020-02409-2
  107. Hu D, Zhang J, Chu R, Yin Z, Hu J, Nugroho YK, et al. 2021. Microalgae Chlorella vulgaris and Scenedesmus dimorphus cocultivation with landfill leachate for pollutant removal and lipid production. Bioresour. Technol. 342: 126003.
  108. Egwu CN, Babalola R, Udoh TH, Esio OO. 2022. Nanotechnology: Applications, Challenges, and Prospects, pp. 3-15. In Ayeni AO, Oladokun O, Orodu OD (eds.), Advanced Manufacturing in Biological, Petroleum, and Nanotechnology Processing: Application Tools for Design, Operation, Cost Management, and Environmental Remediation, Ed. Springer International Publishing, Cham
  109. Sarkar RD, Singh HB, Kalita MC. 2021. Enhanced lipid accumulation in microalgae through nanoparticle-mediated approach, for biodiesel production: a mini-review. Heliyon 7: e08057.
  110. Sibi G, Ananda Kumar D, Gopal T, Harinath K, Banupriya S, Chaitra S. 2017. Metal nanoparticle triggered growth and lipid production in Chlorella vulgaris. Int. J. Sci. Res. Environ. Sci. Toxicol. 2: 1-8.
  111. Vashist V, Chauhan D, Bhattacharya A, Rai MP. 2020. Role of silica coated magnetic nanoparticle on cell flocculation, lipid extraction and linoleic acid production from Chlorella pyrenoidosa. Nat. Product Res. 34: 2852-2856. https://doi.org/10.1080/14786419.2019.1593164
  112. Sarma SJ, Das RK, Brar SK, Le Bihan Y, Buelna G, Verma M, et al. 2014. Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste. Energy 78: 16-22. https://doi.org/10.1016/j.energy.2014.04.112
  113. Sharma KK, Schuhmann H, Schenk PM. 2012. High lipid induction in microalgae for biodiesel production. Energies 5: 1532-1553. https://doi.org/10.3390/en5051532
  114. Kawamura K, Sumii K, Matsumoto M, Nakase D, Kosaki Y, Ishikawa M. 2018. Determining the optimal cultivation strategy for microalgae for biodiesel production using flow cytometric monitoring and mathematical modeling. Biomass Bioenergy 117: 24-31. https://doi.org/10.1016/j.biombioe.2018.07.005
  115. Farooq W, Naqvi SR, Sajid M, Shrivastav A, Kumar K. 2022. Monitoring lipids profile, CO2 fixation, and water recyclability for the economic viability of microalgae Chlorella vulgaris cultivation at different initial nitrogen. J. Biotechnol. 345: 30-39. https://doi.org/10.1016/j.jbiotec.2021.12.014
  116. Cho JM, Oh YK, Park WK, Chang YK. 2020. Effects of nitrogen supplementation status on CO2 biofixation and biofuel production of the promising microalga Chlorella sp. ABC-001. J. Microbiol. Biotechnol. 30: 1235-1243. https://doi.org/10.4014/jmb.2005.05039
  117. Jerez CG, Malapascua JR, Sergejevova M, Figueroa FL, Masojidek. 2016. Effect of nutrient starvation under high irradiance on lipid and starch accumulation in Chlorella fusca (Chlorophyta). Mar. Biotechnol. 18: 24-36. https://doi.org/10.1007/s10126-015-9664-6
  118. Fan J, Cui Y, Wan M, Wang W, Li Y. 2014. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol. Biofuels 7: 17.
  119. Mao X, Wu T, Sun D, Zhang Z, Chen F. 2018. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresour. Technol. 249: 791-798. https://doi.org/10.1016/j.biortech.2017.10.090
  120. Sakarika M, Kornaros M. 2019. Chlorella vulgaris as a green biofuel factory: comparison between biodiesel, biogas and combustible biomass production. Bioresour. Technol. 273: 237-243. https://doi.org/10.1016/j.biortech.2018.11.017
  121. Dong L, Li D, Li C. 2020. Characteristics of lipid biosynthesis of Chlorella pyrenoidosa under stress conditions. Bioprocess Biosyst. Eng. 43: 877-884. https://doi.org/10.1007/s00449-020-02284-x
  122. Gour RS, Garlapati VK, Kant A. 2020. Effect of salinity stress on lipid accumulation in Scenedesmus sp. and Chlorella sp.: feasibility of stepwise culturing. Curr. Microbiol. 77: 779-785. https://doi.org/10.1007/s00284-019-01860-z
  123. Kim HS, Kim M, Park W-K, Chang YK. 2020. Enhanced lipid production of Chlorella sp. HS2 using serial optimization and heat shock. 30: 136-145.
  124. Kim S, Kim H, Ko D, Yamaoka Y, Otsuru M, Kawai-Yamada M, et al. 2013. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. PLoS One 8: e81978.
  125. Zhang L, Liao C, Yang Y, Wang Y-Z, Ding K, Huo D, et al. 2019. Response of lipid biosynthesis in Chlorella pyrenoidosa to intracellular reactive oxygen species level under stress conditions. Bioresour. Technol. 287: 121414.
  126. Lin Y, Dai Y, Xu W, Wu X, Li Y, Zhu H, et al. 2022. The growth, lipid accumulation and fattya acid profile analysis by abscisic acid and indol-3-acetic acid induced in Chlorella sp. FACHB-8. Int. J. Mol. Sci. 23: 4064.
  127. Jaiswal KK, Kumar V, Vlaskin MS, Nanda M. 2021. Impact of pyrene (polycyclic aromatic hydrocarbons) pollutant on metabolites and lipid induction in microalgae Chlorella sorokiniana (UUIND6) to produce renewable biodiesel. Chemosphere 285: 131482.
  128. Bauer LM, Costa JAV, da Rosa APC, Santos LO. 2017. Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresour. Technol. 244: 1425-1432. https://doi.org/10.1016/j.biortech.2017.06.036
  129. Deamici KM, Santos LO, Costa JAV. 2019. Use of static magnetic fields to increase CO2 biofixation by the microalga Chlorella fusca. Bioresour. Technol. 276: 103-109. https://doi.org/10.1016/j.biortech.2018.12.080
  130. Nezammahalleh H, Ghanati F, Adams II TA, Nosrati M, Shojaosadati SA. 2016. Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris. Bioresour. Technol. 218: 700-711. https://doi.org/10.1016/j.biortech.2016.07.018
  131. Costa SS, Peres BP, Machado BR, Costa JAV, Santos LO. 2020. Increased lipid synthesis in the culture of Chlorella homosphaera with magnetic fields application. Bioresour. Technol. 315: 123880.
  132. Baldev E, MubarakAli D, Sivasubramanian V, Pugazhendhi A, Thajuddin N. 2021. Unveiling the induced lipid production in Chlorella vulgaris under pulsed magnetic field treatment. Chemosphere 279: 130673.
  133. Yang B, Liu J, Jiang Y, Chen F. 2016. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: progress, challenge and perspective. Biotechnol. J. 11: 1244-1261. https://doi.org/10.1002/biot.201500617
  134. Lee H, Shin W-S, Kim YU, Jeon S, Kim M, Kang NK, et al. 2020. Enhancement of lipid production under heterotrophic conditions by overexpression of an endogenous bZIP transcription factor in Chlorella sp. HS2. J. Microbiol. Biotechnol. 30: 1597-1606. https://doi.org/10.4014/jmb.2005.05048
  135. West MA, Yee KM, Danao J, Zimmerman JL, Fischer RL, Goldberg RB, et al. 1994. Leafy Cotyledon1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6: 1731-1745. https://doi.org/10.2307/3869904
  136. Liu X, Zhang D, Zhang J, Chen Y, Liu X, Fan C, et al. 2021. Overexpression of the transcription factor AtLEC1 significantly improved the lipid content of Chlorella ellipsoidea. Front. Bioeng. Biotechnol. 9: 626162.
  137. Tokunaga S, Sanda S, Uraguchi Y, Nakagawa S, Sawayama S. 2019. Overexpression of the DOF-type transcription factor enhances lipid synthesis in Chlorella vulgaris. Appl. Biochem. Biotechnol. 189: 116-128. https://doi.org/10.1007/s12010-019-02990-7
  138. Davy R. 2009. Development of catalysts for fast, energy efficient post combustion capture of CO2 into water; an alternative to monoethanolamine (MEA) solvents. Energy Procedia 1: 885-892. https://doi.org/10.1016/j.egypro.2009.01.118
  139. You SK, Ko YJ, Shin SK, Hwang D-h, Kang DH, Park HM, et al. 2020. Enhanced CO2 fixation and lipid production of Chlorella vulgaris through the carbonic anhydrase complex. Bioresour. Technol. 318: 124072.
  140. Research and Markets.Chlorella Market by Technology, by Product Type by Source by Application, Geography - Global Forecast to 2028. Research and Markets. 2021. Avaliable online: https://www.researchandmarkets.com/reports/5438311/chlorella-market-bytechnology-by-product-type"
  141. Future Market Insights. Chlorella Market. Future Market Insights. 2022. Avaliable online: https://www.futuremarketinsights.com/ reports/chlorella-market
  142. Research Reportsword. Global Chlorella Market Research Report 2022 (Status and Outlook). Research Reportsword. 2022. Avaliable online: https://researchreportsworld.com/global-chlorella-market-21185328
  143. Maximize Market Research. Chlorella Market- Global Industry Analysis and Forecast (2022-2029). Maximize Market Research. 2022. Avaliable online: https://www.maximizemarketresearch.com/market-report/chlorella-market/147101/
  144. Cottin SC, Sanders TA, Hall WL. 2011. The differential effects of EPA and DHA on cardiovascular risk factors. Proc. Nutr. Soc. 70: 215-231. https://doi.org/10.1017/S0029665111000061
  145. Eslick GD, Howe PR, Smith C, Priest R, Bensoussan A. 2009. Benefits of fish oil supplementation in hyperlipidemia: a systematic review and meta-analysis. Int .J. Cardiol. 136: 4-16. https://doi.org/10.1016/j.ijcard.2008.03.092
  146. Matos AP, Ferreira WB, de Oliveira Torres RC, Morioka LRI, Canella MHM, Rotta J, et al. 2015. Optimization of biomass production of Chlorella vulgaris grown in desalination concentrate. J. Appl. Phycol. 27: 1473-1483. https://doi.org/10.1007/s10811-014-0451-y
  147. Toumi A, Politaeva N, durovic S, Mukhametova L, Ilyashenko S. 2022. Obtaining DHA-EPA oil concentrates from the biomass of microalga Chlorella sorokiniana. Resources 11: 20.
  148. Khalid M, Saeed ur R, Bilal M, Huang D-f. 2019. Role of flavonoids in plant interactions with the environment and against human pathogens - A review. J. Integr. Agric. 18: 211-230. https://doi.org/10.1016/S2095-3119(19)62555-4
  149. Pagliuso D, Palacios Jara CE, Grandis A, Lam E, Pena Ferreira MJ, Buckeridge MS. 2020. Flavonoids from duckweeds: potential applications in the human diet. RSC Adv. 10: 44981-44988. https://doi.org/10.1039/D0RA06741E
  150. Yadavalli R, Ratnapuram H, Motamarry S, Reddy CN, Ashokkumar V, Kuppam C. 2020. Simultaneous production of flavonoids and lipids from Chlorella vulgaris and Chlorella pyrenoidosa. Biomass Convers. Biorefin. 12: 683-691.
  151. Mohamad MF, Dailin DJ, Gomaa SE, Nurjayadi M, Enshasy H. 2019. Natural colorant for food: a healthy alternative. Int. J. Sci. Technol. Res. 8: 3161-3166.
  152. Wang S, Chen Y-k, Ghonimy A, Yu T, Gao Y-s, Wu Z-c, et al. 2020. L-Carnitine supplementation improved population growth, photosynthetic pigment synthesis and antioxidant activity of marine Chlorella sp. Aquac. Rep. 17: 100394.
  153. Romero N, Visentini FF, Marquez VE, Santiago LG, Castro GR, Gagneten AM. 2020. Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles. Environ. Res. 189: 109857.
  154. Fakhri M, Riyani E, Ekawati AW, Arifin NB, Yuniarti A, Widyawati Y, et al. 2021. Biomass, pigment production, and nutrient uptake of Chlorella sp. under different photoperiods. Biodivers. J. Biol. Diversity 22: 5344-5349.
  155. Liu X-y, Hong Y, Gu W-p. 2021. Influence of light quality on Chlorella growth, photosynthetic pigments and high-valued products accumulation in coastal saline-alkali leachate. J. Water Reuse Desalin. 11: 301-311. https://doi.org/10.2166/wrd.2021.088
  156. Cai Y, Liu Y, Liu T, Gao K, Zhang Q, Cao L, et al. 2021. Heterotrophic cultivation of Chlorella vulgaris using broken rice hydrolysate as carbon source for biomass and pigment production. Bioresour. Technol. 323: 124607.
  157. Botella-Pavia P, Rodriguez-Concepcion M. 2006. Carotenoid biotechnology in plants for nutritionally improved foods. Physiol. Plant. 126: 369-381. https://doi.org/10.1111/j.1399-3054.2006.00632.x
  158. Lu S, Li L. 2008. Carotenoid metabolism: biosynthesis, regulation, and beyond. J. Integr. Plant Biol. 50: 778-785. https://doi.org/10.1111/j.1744-7909.2008.00708.x
  159. Fabryova T, Cheel J, Kuba? D, Hrouzek P, Vu DL, T?mova L, et al. 2019. Purification of lutein from the green microalgae Chlorella vulgaris by integrated use of a new extraction protocol and a multi-injection high performance counter-current chromatography (HPCCC). Algal Res. 41: 101574.
  160. Sun Z, Zhang Y, Sun L-p, Liu J. 2019. Light elicits astaxanthin biosynthesis and accumulation in the fermented ultrahigh-density Chlorella zofinginesis. J. Agric. Food Chem. 67: 5579-5586. https://doi.org/10.1021/acs.jafc.9b01176
  161. Ahmad N, Mounsef JR, Lteif R. 2021. A simple and fast experimental protocol for the extraction of xanthophylls from microalga Chlorella luteoviridis. Prep. Biochem. Biotechnol. 51: 1071-1075. https://doi.org/10.1080/10826068.2021.1901231
  162. Fernandez-Linares LC, Barajas CG, Paramo ED, Corona JAB. 2017. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium. Bioresour. Technol. 244: 400-406. https://doi.org/10.1016/j.biortech.2017.07.141
  163. Fernandes AS, Nascimento TC, Pinheiro PN, Vendruscolo RG, Wagner R, de Rosso VV, et al. 2021. Bioaccessibility of microalgaebased carotenoids and their association with the lipid matrix. Food Res. Int. 148: 110596.
  164. Baidya A, Akter T, Islam MR, Shah AKMA, Hossain MA, Salam MA, et al. 2021. Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. Heliyon 7: e08525.
  165. Jalilian N, Najafpour G, Khajouei M. 2019. Enhanced vitamin B12 production using Chlorella vulgaris. Int. J. Eng. 32: 1-9.
  166. Mtaki K, Kyewalyanga MS, Mtolera MS. 2021. Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annal. Microbiol. 71: 1-13. https://doi.org/10.1186/s13213-020-01613-5
  167. Prabakaran G, Moovendhan M, Arumugam A, Matharasi A, Dineshkumar R, Sampathkumar P. 2019. Evaluation of chemical composition and in vitro antiinflammatory effect of marine microalgae Chlorella vulgaris. Waste Biomass Valori. 10: 3263-3270. https://doi.org/10.1007/s12649-018-0370-2
  168. Andrade L, Andrade C, Dias M, Nascimento C, Mendes M. 2018. Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process. Technol. 6: 00144.
  169. Yu M, Chen M, Gui J, Huang S, Liu Y, Shentu H, et al. 2019. Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo. Int. J. Biol. Macromol. 137: 139-150. https://doi.org/10.1016/j.ijbiomac.2019.06.222
  170. Shibata S, Natori Y, Nishihara T, Tomisaka K, Matsumoto K, Sansawa H, et al. 2003. Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes. J. Nutr. Sci. Vitaminol. 49: 334-339. https://doi.org/10.3177/jnsv.49.334
  171. Hsu H-Y, Jeyashoke N, Yeh C-H, Song Y-J, Hua K-F, Chao LK. 2010. Immunostimulatory bioactivity of algal polysaccharides from Chlorella pyrenoidosa activates macrophages via Toll-like receptor 4. J. Agric. Food Chem. 58: 927-936. https://doi.org/10.1021/jf902952z
  172. Sansawa H, Takahashi M, Tsuchikura S, Endo H. 2006. Effect of Chlorella and its fractions on blood pressure, cerebral stroke lesions, and life-span in stroke-prone spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 52: 457-466. https://doi.org/10.3177/jnsv.52.457
  173. Mizoguchi T, Takehara I, Masuzawa T, Saito T, Naoki Y. 2008. Nutrigenomic studies of effects of Chlorella on subjects with high-risk factors for lifestyle-related disease. J. Med. Food. 11: 395-404. https://doi.org/10.1089/jmf.2006.0180
  174. Otsuki T, Shimizu K, Iemitsu M, Kono I. 2013. Multicomponent supplement containing Chlorella decreases arterial stiffness in healthy young men. J. Clin. Biochem. Nutr. 53: 166-169. https://doi.org/10.3164/jcbn.13-51
  175. Otsuki T, Shimizu K, Maeda S. 2015. Changes in arterial stiffness and nitric oxide production with Chlorella-derived multicomponent supplementation in middle-aged and older individuals. J. Clin. Biochem. Nutr. 57: 228-232. https://doi.org/10.3164/jcbn.15-86
  176. Nishimoto Y, Nomaguchi T, Mori Y, Ito M, Nakamura Y, Fujishima M, et al. 2021. The nutritional efficacy of Chlorella supplementation depends on the individual gut environment: a randomised control study. Front. Nutr. 8: 270.
  177. Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. 2013. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 8: e55387.
  178. Das SK, Sathish A, Stanley J. 2018. Production of biofuel and bioplastic from Chlorella pyrenoidosa. Mater. Today: Proc. 5: 16774-16781. https://doi.org/10.1016/j.matpr.2018.06.020
  179. Cassuriaga A, Freitas B, Morais M, Costa J. 2018. Innovative polyhydroxybutyrate production by Chlorella fusca grown with pentoses. Bioresour. Technol. 265: 456-463. https://doi.org/10.1016/j.biortech.2018.06.026
  180. Becker EW. 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25: 207-210. https://doi.org/10.1016/j.biotechadv.2006.11.002
  181. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96. https://doi.org/10.1263/jbb.101.87
  182. Van Durme J, Goiris K, De Winne A, De Cooman L, Muylaert K. 2013. Evaluation of the volatile composition and sensory properties of five species of microalgae. J. Agric. Food Chem. 61: 10881-10890. https://doi.org/10.1021/jf403112k
  183. Coleman B, Van Poucke C, Dewitte B, Ruttens A, Moerdijk-Poortvliet T, Latsos C, et al. 2022. Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods 5: 100139.