References
- Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV, et al. 2020. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid. Med. Cell. Longev. 2020: 5245308.
- Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. 2017. Mechanisms of foam cell formation in atherosclerosis. J. Mol. Med. 95: 1153-1165. https://doi.org/10.1007/s00109-017-1575-8
- Kattoor AJ, Kanuri SH, Mehta JL. 2019. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr. Med. Chem. 26: 1693-1700. https://doi.org/10.2174/0929867325666180508100950
- Pirillo A, Norata GD, Catapano AL. 2013. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013: 152786.
- Ericsson J, Usheva A and Edwards PA. 1999. YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes. J. Biol. Chem. 274: 14508-14513. https://doi.org/10.1074/jbc.274.20.14508
- Zhang M, Zhang Y, Yang S, Zhou J, Gao W, Yang X, et al. 2017. Multifunctional YY1 in liver diseases. Semin. Liver Dis. 37: 363-376. https://doi.org/10.1055/s-0037-1607451
- Pan G, Diamanti K, Cavalli M, Lara Gutierrez A, Komorowski J, Wadelius C. 2021. Multifaceted regulation of hepatic lipid metabolism by YY1. Life Sci. Alliance 4: e202000928.
- Li Y, Kasim V, Yan X, Li L, Meliala ITS, Huang C, et al. 2019. Yin Yang 1 facilitates hepatocellular carcinoma cell lipid metabolism and tumor progression by inhibiting PGC-1β-induced fatty acid oxidation. Theranostics 9: 7599-7615. https://doi.org/10.7150/thno.34931
- Zolova OE, Wight PA. 2011. YY1 negatively regulates mouse myelin proteolipid protein (Plp1) gene expression in oligodendroglial cells. ASN Neuro 3: e00067.
- Zhang XC, Liang HF, Luo XD, Wang HJ, Gu AP, Zheng CY, et al. 2018. YY1 promotes IL-6 expression in LPS-stimulated BV2 microglial cells by interacting with p65 to promote transcriptional activation of IL-6. Biochem. Biophys. Res. Commun. 502: 269-275. https://doi.org/10.1016/j.bbrc.2018.05.159
- Jian D, Dai B, Hu X, Yao Q, Zheng C, Zhu J. 2017. Ox-LDL increases microRNA-29a transcription through upregulating YY1 and STAT1 in macrophages. Cell Biol. Int. 41: 1001-1011. https://doi.org/10.1002/cbin.10803
- Ummarino D. 2017. Dyslipidaemia: anti-PCSK9 vaccines to halt atherosclerosis. Nat. Rev. Cardiol. 14: 442-443. https://doi.org/10.1038/nrcardio.2017.106
- Shapiro MD, Tavori H, Fazio S. 2018. PCSK9: from basic science discoveries to clinical trials. Circ. Res. 122: 1420-1438. https://doi.org/10.1161/CIRCRESAHA.118.311227
- Yurtseven E, Ural D, Baysal K, Tokgozoglu L. 2020. An update on the role of PCSK9 in atherosclerosis. J. Atheroscler. Thromb. 27: 909-918. https://doi.org/10.5551/jat.55400
- Momtazi-Borojeni AA, Jaafari MR, Badiee A, Banach M, Sahebkar A. 2019. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 17: 223.
- Ricci C, Ruscica M, Camera M, Rossetti L, Macchi C, Colciago A, et al. 2018. PCSK9 induces a pro-inflammatory response in macrophages. Sci. Rep. 8: 2267.
- Chan JC, Piper DE, Cao Q, Liu D, King C, Wang W, et al. 2009. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl. Acad. Sci. USA 106: 9820-9825. https://doi.org/10.1073/pnas.0903849106
- Maxwell KN, Fisher EA, Breslow JL. 2005. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc. Natl. Acad. Sci. USA 102: 2069-2074. https://doi.org/10.1073/pnas.0409736102
- Zhou S, Sun Y, Zhao K, Gao Y, Cui J, Qi L, et al. 2020. miR-21/PTEN pathway mediates the cardioprotection of geniposide against oxidized low-density lipoprotein-induced endothelial injury via suppressing oxidative stress and inflammatory response. Int. J. Mol. Med. 45: 1305-1316.
- Tsimikas S, Miyanohara A, Hartvigsen K, Merki E, Shaw PX, Chou MY, et al. 2011. Human oxidation-specific antibodies reduce foam cell formation and atherosclerosis progression. J. Am. College Cardiol. 58: 1715-1727. https://doi.org/10.1016/j.jacc.2011.07.017
- Gong M, Zhuo X, Ma A. 2017. STAT6 upregulation promotes M2 macrophage polarization to suppress atherosclerosis. Med. Sci. Monitor Basic Res. 23: 240-249. https://doi.org/10.12659/MSMBR.904014
- Solanki A, Bhatt LK, Johnston TP. 2018. Evolving targets for the treatment of atherosclerosis. Pharmacol. Ther. 187: 1-12. https://doi.org/10.1016/j.pharmthera.2018.02.002
- Ding Z, Pothineni NVK, Goel A, Luscher TF, Mehta JL. 2020. PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc. Res. 116: 908-915. https://doi.org/10.1093/cvr/cvz313
- Fu W, Gao XP, Zhang S, Dai YP, Zou WJ, Yue LM. 2019. 17β-Estradiol inhibits PCSK9-mediated LDLR degradation through GPER/ PLC activation in HepG2 cells. Front. Endocrinol. 10: 930.
- Cui CJ, Jin JL, Guo LN, Sun J, Wu NQ, Guo YL, et al. 2020. Beneficial impact of epigallocatechingallate on LDL-C through PCSK9/ LDLR pathway by blocking HNF1α and activating FoxO3a. J. Transl. Med. 18: 195.
- Yin R, Zhu X, Wang J, Yang S, Ma A, Xiao Q, et al. 2019. MicroRNA-155 promotes the ox-LDL-induced activation of NLRP3 inflammasomes via the ERK1/2 pathway in THP-1 macrophages and aggravates atherosclerosis in ApoE-/- mice. Ann. Palliat. Med. 8: 676-689. https://doi.org/10.21037/apm.2019.10.11
- Ding Z, Wang X, Liu S, Zhou S, Kore RA, Mu S, et al. 2020. NLRP3 inflammasome via IL-1β regulates PCSK9 secretion. Theranostics 10: 7100-7110. https://doi.org/10.7150/thno.45939
- Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY, Wing A, et al. 2017. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550: 119-123. https://doi.org/10.1038/nature24022
- Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. 2017. Evolocumab and clinical outcomes in patients with cardiovascular disease. New Eng. J. Med. 376: 1713-1722. https://doi.org/10.1056/NEJMoa1615664
- Bernelot Moens SJ, Neele AE, Kroon J, van der Valk FM, Van den Bossche J, Hoeksema MA, et al. 2017. PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia. Eur. Heart J. 38: 1584-1593. https://doi.org/10.1093/eurheartj/ehx002
- Giunzioni I, Tavori H, Covarrubias R, Major AS, Ding L, Zhang Y, et al. 2016. Local effects of human PCSK9 on the atherosclerotic lesion. J. Pathol. 238: 52-62. https://doi.org/10.1002/path.4630
- Li J, Liang X, Wang Y, Xu Z, Li G. 2017. Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced endothelial cell apoptosis. Mol. Med. Rep. 16: 1817-1827. https://doi.org/10.3892/mmr.2017.6803
- Li S, Guo YL, Xu RX, Zhang Y, Zhu CG, Sun J, et a. 2014. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis 234: 441-445. https://doi.org/10.1016/j.atherosclerosis.2014.04.001
- Li S and Li JJ. 2015. PCSK9: a key factor modulating atherosclerosis. J. Atheroscler. Thromb. 22: 221-230. https://doi.org/10.5551/jat.27615
- Tang ZH, Li TH, Peng J, Zheng J, Li TT, Liu LS, et al. 2019. PCSK9: a novel inflammation modulator in atherosclerosis? J. Cell Physiol. 234: 2345-2355. https://doi.org/10.1002/jcp.27254
- Walley KR, Thain KR, Russell JA, Reilly MP, Meyer NJ, Ferguson JF, et al. 2014. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci. Transl. Med. 6: 258ra143.
- Ding Z, Liu S, Wang X, Deng X, Fan Y, Shahanawaz J, et al. 2015. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc. Res. 107: 556-567. https://doi.org/10.1093/cvr/cvv178