DOI QR코드

DOI QR Code

Investigation of microplastic biofilm communities originated from freshwater

미세플스틱 표면에 형성된 담수 유래 생물막 군집 고찰

  • Choi, Woodan (Center for Water Cycle Research, Korea Institute of Science and Technology) ;
  • Nguyen, Hien Thi (Center for Water Cycle Research, Korea Institute of Science and Technology) ;
  • Kim, Eun-Ju (Center for Water Cycle Research, Korea Institute of Science and Technology) ;
  • Cho, Kyungjin (Center for Water Cycle Research, Korea Institute of Science and Technology)
  • 최우단 (한국과학기술연구원 물자원순환연구단) ;
  • 히엔 티 뉴옌 (한국과학기술연구원 물자원순환연구단) ;
  • 김은주 (한국과학기술연구원 물자원순환연구단) ;
  • 조경진 (한국과학기술연구원 물자원순환연구단)
  • Received : 2022.02.22
  • Accepted : 2022.03.07
  • Published : 2022.04.15

Abstract

Recently microplastic (MP) biofilm is being attracted as an important environmental issue because it can act as a pollutant carrier in aqueous system. Therefore, this study investigated the MP biofilm communities originated from freshwater. The results showed the bacterial community structure of MP biofilm was distinctively different from the freshwater regardless of biofilm-forming condition and MP type. For MP biofilm communities exposed to raw freshwater, Solimonas variicoloris-like microbe, Frigidibacter albus-like microbe, Nitrospirillum amazonense-like microbe, and Pseudochroococcus couteii-like microbe became abundant, while Acinetobacter johnsonii, Macellibacteroides fermentans, and Sedimentibacter acidaminivorans-like microbe were found as major bacteria for MP biofilm communities exposed to organic rich condition. The results of this study suggest that the unique freshwater biofilm community could be formed on the MP surface.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 해양극지기초원천기술개발사업 (2019M1A5A1101470)과 한국과학기술연구원 기관고유사업 (2E31932)의 지원을 받아 수행되었습니다.

References

  1. Arias Andres, M., Rojas Jimenez, K., and Grossart, H.P. (2019). Collateral effects of microplastic pollution on aquatic microorganisms: An ecological perspective, TrAC, Trends Anal. Chem., 112, 234-240. https://doi.org/10.1016/j.trac.2018.11.041
  2. Auguet, O., Pijuan, M., Batista, J., Borrego, C.M., Gutierrez, O., and Voordouw, G. (2015). Changes in Microbial Biofilm Communities during Colonization of Sewer Systems, Appl. Environ. Microbiol., 81(20), 7271-7280. https://doi.org/10.1128/AEM.01538-15
  3. Baik, K.S., Choe, H.N., Park, S.C., Hwang, Y.M., Kim, E.M., Park, C., and Seong, C.N. (2013). Sphingopyxis rigui sp. nov. and Sphingopyxis wooponensis sp. nov., isolated from wetland freshwater, and emended description of the genus Sphingopyxis, Int. J. Syst. Evol. Microbiol., 63(Pt_4), 1297-1303. https://doi.org/10.1099/ijs.0.044057-0
  4. Baranitharan, E., Khan, M.R., Yousuf, A., Teo, W.F.A., Tan, G.Y.A., and Cheng, C.K. (2015). Enhanced power generation using controlled inoculum from palm oil mill effluent fed microbial fuel cell, Fuel, 143, 72-79. https://doi.org/10.1016/j.fuel.2014.11.030
  5. Brailsford, F.L., Glanville, H.C., Golyshin, P.N., Marshall, M.R., Lloyd, C.E., Johnes, P.J., and Jones, D.L. (2019). Nutrient enrichment induces a shift in dissolved organic carbon (DOC) metabolism in oligotrophic freshwater sediments, Sci. Total Environ., 690, 1131-1139. https://doi.org/10.1016/j.scitotenv.2019.07.054
  6. Cho, K., Jeong, D., Lee, S., and Bae, H. (2018). Chlorination caused a shift in marine biofilm niches on microfiltration/ultrafiltration and reverse osmosis membranes and UV irradiation effectively inactivated a chlorine-resistant bacterium, Appl. Microbiol. Biotechnol., 102(16), 7183-7194. https://doi.org/10.1007/s00253-018-9111-5
  7. Choi, M., Cho, K., Lee, S., Chung, Y.C., Park, J., and Bae, H. (2018). Effective seeding strategy using flat type poly (vinyl alcohol) cryogel for anammox enrichment, Chemosphere, 205, 88-97. https://doi.org/10.1016/j.chemosphere.2018.04.055
  8. Cole, M., Lindeque, P., Halsband, C., and Galloway, T.S. (2011). Microplastics as contaminants in the marine environment: A review, Mar. Pollut. Bull., 62(12), 2588-2597. https://doi.org/10.1016/j.marpolbul.2011.09.025
  9. Dai, Y., Yang, Y., Wu, Z., Feng, Q., Xie, S., and Liu, Y. (2016). Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status, Appl. Microbiol. Biotechnol., 100(9), 4161-4175. https://doi.org/10.1007/s00253-015-7253-2
  10. De Tender, C.A., Devriese, L.I., Haegeman, A., Maes, S., Ruttink, T., and Dawyndt, P. (2015). Bacterial community profiling of plastic litter in the Belgian part of the North Sea, Environ. Sci. Technol., 49(16), 9629-9638. https://doi.org/10.1021/acs.est.5b01093
  11. Fellman, J.B., Hood, E., and Spencer, R.G.M. (2010). Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review, Limnol. Oceanogr., 55(6), 2452-2462. https://doi.org/10.4319/lo.2010.55.6.2452
  12. Findlay, S., Pace, M., and Lints, D. (1991). Variability and transport of suspended sediment, particulate and dissolved organic carbon in the tidal freshwater Hudson River, Biogeochem., 12(3), 149-169. https://doi.org/10.1007/BF00002605
  13. Frere, L., Maignien, L., Chalopin, M., Huvet, A., Rinnert, E., Morrison, H., Kerninon, S., Cassone, A. L., Lambert, C., Reveillaud, J., and Paul Pont, I. (2018). Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size, Environ. Pollut., 242, 614-625. https://doi.org/10.1016/j.envpol.2018.07.023
  14. Imachi, H., Sakai, S., Kubota, T., Miyazaki, M., Saito, Y., and Takai, K. (2016). Sedimentibacter acidaminivorans sp. nov., an anaerobic, amino-acid-utilizing bacterium isolated from marine subsurface sediment, Int. J. Syst. Evol. Microbiol., 66(3), 1293-1300. https://doi.org/10.1099/ijsem.0.000878
  15. Jabari, L., Gannoun, H., Cayol, J.L., Hedi, A., Sakamoto, M., Falsen, E., Ohkuma, M., Hamdi, M., Fauque, G., Ollivier, B., and Fardeau, M.L. (2012). Macellibacteroides fermentans gen. nov., sp. nov., a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters, Int. J. Syst. Evol. Microbiol., 62(Pt_10), 2522-2527. https://doi.org/10.1099/ijs.0.032508-0
  16. Kasalicky, V., Jezbera, J., Simek, K., and Hahn, M.W. (2010). Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans, Int. J. Syst. Evol. Microbiol., 60(Pt 12), 2710-2714. https://doi.org/10.1099/ijs.0.018952-0
  17. Kirstein, I.V., Wichels, A., Krohne, G., and Gerdts, G. (2018). Mature biofilm communities on synthetic polymers in seawater - Specific or general?, Mar. Environ. Res., 142, 147-154. https://doi.org/10.1016/j.marenvres.2018.09.028
  18. Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., and Glockner, F.O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Res., 41(1), e1-e1. https://doi.org/10.1093/nar/gks808
  19. Koelmans, A.A., Bakir, A., Burton, G.A., and Janssen, C.R. (2016). Microplastic as a vector for chemicals in the Aquatic environment: critical review and model-supported reinterpretation of empirical studies, Environ. Sci. Technol., 50(7), 3315-3326. https://doi.org/10.1021/acs.est.5b06069
  20. Koelmans, A.A., Mohamed Nor, N.H., Hermsen, E., Kooi, M., Mintenig, S.M., and De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality, Water Res., 155, 410-422. https://doi.org/10.1016/j.watres.2019.02.054
  21. Kulichevskaya, I.S., Ivanova, A.A., Detkova, E.N., Rijpstra, W.I.C., Sinninghe Damste, J.S., and Dedysh, S.N. (2017). Tundrisphaera lichenicola gen. nov., sp. nov., a psychrotolerant representative of the family Isosphaeraceae from lichen-dominated tundra soils, Int. J. Syst. Evol. Microbiol., 67(9), 3583-3589. https://doi.org/10.1099/ijsem.0.002172
  22. Kurek, M.R., Harir, M., Shukle, J.T., Schroth, A.W., Schmitt Kopplin, P., and Druschel, G.K. (2020). Chemical fractionation of organic matter and organic phosphorus extractions from freshwater lake sediment, Anal. Chim. Acta, 1130, 29-38. https://doi.org/10.1016/j.aca.2020.07.013
  23. Lee, J., Park, T., Kim, M.S., Kim, J., Lee, S., Lee, S.K., Lee, Y.S., Lee, W.S., Yu, S., and Rhew, D. (2016). Stable isotope on the evaluation of water quality in the presence of WWTPs in rivers, Environ. Sci. Pollut. Res., 23(18), 18175-18182. https://doi.org/10.1007/s11356-016-6990-9
  24. Li, A.H., and Zhou, Y.G. (2015). Frigidibacter albus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from lake water, Int. J. Syst. Evol. Microbiol., 65(Pt_4), 1199-1206. https://doi.org/10.1099/ijs.0.000080
  25. Liu, Y., Song, X.F., Jiang, J.T., Liu, Y.H., Xu, C.J., Li, H., and Liu, Z.P. (2011). Hydrocarboniphaga daqingensis sp. nov., isolated from a freshwater lake, Int. J. Syst. Evol. Microbiol., 61(2), 408-411. https://doi.org/10.1099/ijs.0.019380-0
  26. Nadkarni, M.A., Martin, F.E., Jacques, N.A., and Hunter, N. (2002). Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set, Microbiol., 148(1), 257-266. https://doi.org/10.1099/00221287-148-1-257
  27. Nel, H.A., Dalu, T., and Wasserman, R.J. (2018). Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system, Sci. Total Environ., 612, 950-956. https://doi.org/10.1016/j.scitotenv.2017.08.298
  28. Reza, M.S., Mizusawa, N., Kumano, A., Oikawa, C., Ouchi, D., Kobiyama, A., Yamada, Y., Ikeda, Y., Ikeda, D., Ikeo, K., Sato, S., Ogata, T., Kudo, T., Jimbo, M., Yasumoto, K., Yoshitake, K., and Watabe, S. (2018). Metagenomic analysis using 16S ribosomal RNA genes of a bacterial community in an urban stream, the Tama River, Tokyo. Fish. Sci., 84(3), 563-577. https://doi.org/10.1007/s12562-018-1193-6
  29. Rezania, S., Park, J., Din, M.F.M., Taib, S.M., Talaiekhozani, A., Yadav, K.K., and Kamyab, H. (2018). Microplastics pollution in different aquatic environments and biota: A review of recent studies, Mar. Pollut. Bull., 133, 191-208. https://doi.org/10.1016/j.marpolbul.2018.05.022
  30. Rummel, C.D., Jahnke, A., Gorokhova, E., Kuhnel, D., and Schmitt Jansen, M. (2017). Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment, Environ. Sci. Technol. Lett., 4(7), 258-267. https://doi.org/10.1021/acs.estlett.7b00164
  31. Saraf, A., Suradkar, A., Dawda, H.G., Gaysina, L.A., Gabidullin, Y., Kumat, A., Behere, I., Kotulkar, M., Batule, P., and Singh, P. (2019). Phylogenetic complexities of the members of Rivulariaceae with the re-creation of the family Calotrichaceae and description of Dulcicalothrix necridiiformans gen nov., sp nov., and reclassification of Calothrix desertica, FEMS Microbiol. Lett., 366(17).
  32. Sheu, S.Y., Cho, N.T., Arun, A.B., and Chen, W.M. (2011). Proposal of Solimonas aquatica sp. nov., reclassification of Sinobacter flavus Zhou et al. 2008 as Solimonas flava comb. nov. and Singularimonas variicoloris Friedrich and Lipski 2008 as Solimonas variicoloris comb. nov. and emended descriptions of the genus Solimonas and its type species Solimonas soli, Int. J. Syst. Evol. Microbiol., 61(9), 2284-2291. https://doi.org/10.1099/ijs.0.023010-0
  33. Thomas, J.D. (1997). The role of dissolved organic matter, particularly free amino acids and humic substances, in freshwater ecosystems, Freshwat. Biol., 38(1), 1-36. https://doi.org/10.1046/j.1365-2427.1997.00206.x
  34. Wang, X.Y., and Xie, J. (2020). Quorum sensing system-regulated proteins affect the spoilage potential of co-cultured acinetobacter johnsonii and pseudomonas fluorescens from dpoiled bigeye tuna (Thunnus obesus) as determined by proteomic analysis, Front. Microbiol., 11.
  35. Zha, D., Li, Y., Yang, C., and Yao, C. (2018). Assessment of organophosphate flame retardants in surface water and sediment from a freshwater environment (Yangtze River, China), Environ. Monit. Assess., 190(4), 222. https://doi.org/10.1007/s10661-018-6587-5