DOI QR코드

DOI QR Code

미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점

Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications

  • 최상기 (광주과학기술원 지구환경공학부) ;
  • 이웅배 (광주과학기술원 지구환경공학부) ;
  • 김영모 (한양대학교 건설환경공학과) ;
  • 홍석원 (한국과학기술연구원 물자원순환연구센터) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 이윤호 (광주과학기술원 지구환경공학부)
  • Choi, Sangki (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Woongbae (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Young Mo (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Hong, Seok Won (Center for Water Cycle Research, Korea Institute of Science and Technology (KIST)) ;
  • Son, Heejong (Water Quality Institute, Busan Water Authority) ;
  • Lee, Yunho (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
  • 투고 : 2022.02.03
  • 심사 : 2022.02.18
  • 발행 : 2022.04.15

초록

Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 상하수도 혁신 기술개발사업의 지원을 받아 연구되었습니다 (2019002710004).

참고문헌

  1. Altmann, J., Ruhl, A.S., Zietzschmann, F. and Jekel, M. (2014). Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment, Water Res., 55, 185-193. https://doi.org/10.1016/j.watres.2014.02.025
  2. Altmann, J., Zietzschmann, F., Geiling, E.L., Ruhl, A.S., Sperlich, A. and Jekel, M. (2015). Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater, Chemosphere, 125, 198-204. https://doi.org/10.1016/j.chemosphere.2014.12.061
  3. Audenaert, W.T.M., Vermeersch, Y., Van Hulle, S.W.H., Dejans, P., Dumoulin, A. and Nopens, I. (2011). Application of a mechanistic UV/hydrogen peroxide model at full-scale: Sensitivity analysis, calibration and performance evaluation, Chem. Eng. J., 171(1), 113-126. https://doi.org/10.1016/j.cej.2011.03.071
  4. Beltran, F.J. (2004). Ozone Reaction Kinetics for Water and Wastewater Systems. Lewis Publishers, Boca Raton, Fla.
  5. Benstoem, F., Nahrstedt, A., Boehler, M., Knopp, G., Montag, D., Siegrist, H. and Pinnekamp, J. (2017). Performance of granular activated carbon to remove micropollutants from municipal wastewater-A meta-analysis of pilot- and large-scale studies, Chemosphere, 185, 105-118. https://doi.org/10.1016/j.chemosphere.2017.06.118
  6. Boehler, M., Zwickenpflug, B., Hollender, J., Ternes, T., Joss, A. and Siegrist, H. (2012). Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon, Water Sci. Technol., 66(10), 2115-2121. https://doi.org/10.2166/wst.2012.353
  7. Bourgin, M., Beck, B., Boehler, M., Borowska, E., Fleiner, J., Salhi, E., Teichler, R., Von Gunten, U., Siegrist, H. and McArdell, C.S. (2018). Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products, Water Res., 129, 486-498. https://doi.org/10.1016/j.watres.2017.10.036
  8. Brienza, M., Manasfi, R. and Chiron, S. (2019). Relevance of N-nitrosation reactions for secondary amines in nitrate-rich wastewater under UV-C treatment, Water Res., 162(2), 22-29. https://doi.org/10.1016/j.watres.2019.06.055
  9. Buffle, M. and Von Gunten, U. (2003). "The chlorine-ammonia process for enhanced bromate minimization", Proceedings of Water Quality Technology Conference, 2-6 Nov, 2003, Philadelphia, USA, American Water Works Association.
  10. Buffle, M.O., Schumacher, J., Meylan, S., Jekel, M. and Von Gunten, U. (2006). Ozonation and advanced oxidation of wastewater: Effect of O3 dose, pH, DOM and HO.-scavengers on ozone decomposition and HO. generation, Ozone Sci. Eng., 28(4), 247-259. https://doi.org/10.1080/01919510600718825
  11. Bui, X.T., Vo, T.P.T., Ngo, H.H., Guo, W.S. and Nguyen, T.T. (2016). Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications, Sci. Total Environ., 563, 1050-1067. https://doi.org/10.1016/j.scitotenv.2016.04.191
  12. Cedat, B., de Brauer, C., Metivier, H., Dumont, N. and Tutundjan, R. (2016). Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale, Water Res., 100, 357-366. https://doi.org/10.1016/j.watres.2016.05.040
  13. Chen, Z., Li, M. and Wen, Q. (2017). Comprehensive evaluation of three sets of advanced wastewater treatment trains for treating secondary effluent: Organic micro-pollutants and bio-toxicity, Chemosphere, 189, 426-434. https://doi.org/10.1016/j.chemosphere.2017.09.092
  14. Choi, S., Lee, Y., Kim, Y.M., Hong, S.W., Son, H. and Lee, Y. (2021). A review on status of organic micropollutants from sewage effluent and their management strategies, J. Korean Soc. Water Wastewater, 35(3), 205-225. https://doi.org/10.11001/jksww.2021.35.3.205
  15. Chuang, Y.H. and Mitch, W.A. (2017). Effect of ozonation and biological activated carbon treatment of wastewater effluents on formation of N-nitrosamines and halogenated disinfection byproducts, Environ. Sci. Technol., 51(4), 2329-2338. https://doi.org/10.1021/acs.est.6b04693
  16. Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J. and Tchobanoglous, G. (2012). MWH's Water Treatment: Principles and Design. John Wiley & Sons.
  17. Dodd, M.C., Kohler, H.P.E. and Von Gunten, U. (2009). Oxidation of antibacterial compounds by ozone and hydroxyl radical: elimination of biological activity during aqueous ozonation processes, Environ. Sci. Technol., 43(7), 2498-2504. https://doi.org/10.1021/es8025424
  18. Eggen, R.I., Hollender, J., Joss, A., Scharer, M. and Stamm, C. (2014). Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants, Environ. Sci. Technol., 7683-7689.
  19. Elovitz, M.S. and Von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The R(ct) concept, Ozone Sci. Eng., 21(3), 239-260. https://doi.org/10.1080/01919519908547239
  20. Elovitz, M.S., von Gunten, U. and Kaiser, H.P. (2000). Hydroxyl Radical/Ozone Ratios During Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties, Ozone Sci. Eng., 22(2), 123-150. https://doi.org/10.1080/01919510008547216
  21. Environmental Protection Agency (EPA). (2006). National Primary Drinking Water Regulations: Long Term 2 Enhanced Surface Water Treatment Rule; Final Rule, Federal Register 40 CFR Parts 9, 141-142.
  22. Fundneider, T., Alonso, V.A., Wick, A., Albrecht, D. and Lackner, S. (2020). Implications of biological activated carbon filters for micropollutant removal in wastewater treatment, Water Res., 189, 116588. https://doi.org/10.1016/j.watres.2020.116588
  23. Hofman-Caris, R.C.H.M., Harmsen, D.J.H., Puijker, L., Baken, K.A., Wols, B.A. Beerendonk, E.F. and Keltjens, L.L.M. (2015). Influence of process conditions and water quality on the formation of mutagenic byproducts in UV/H2O2 processes, Water Res., 74, 191-202. https://doi.org/10.1016/j.watres.2015.01.035
  24. Hu, J., Aarts, A., Shang, R., Heijman, B. and Rietveld, L. (2016). Integrating powdered activated carbon into wastewater tertiary filter for micro-pollutant removal, J. Environ. Manage., 177, 45-52. https://doi.org/10.1016/j.jenvman.2016.04.003
  25. Hubner, U., Zucker, I. and Jekel, M. (2015) Options and limitations of hydrogen peroxide addition to enhance radical formation during ozonation of secondary effluents, J. Water Reuse Desal., 5(1), 8. https://doi.org/10.2166/wrd.2014.036
  26. Jeong, D., Ham, S., Lee, W., Chung, H. and Kim, H. (2017). Study on occurrence and management of organic micropollutants in sewer systems, J. Korean Soc. Water Wastewater, 31(6), 551-566. https://doi.org/10.11001/jksww.2017.31.6.551
  27. Kang, S. and Xing, B. (2005). Phenanthrene sorption to sequentially extracted soil humic acids and humins, Environ. Sci. Technol., 39(1), 134-140. https://doi.org/10.1021/es0490828
  28. Karanfil, T. and Kilduff, J.E. (1999). Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants, Environ. Sci. Technol., 33(18), 3217-3224. https://doi.org/10.1021/es981016g
  29. Keen, O.S. and Linden, K.G. (2013). Degradation of antibiotic activity during UV/H2O2 advanced oxidation and photolysis in wastewater effluent, Environ. Sci. Technol., 47(22), 13020-13030. https://doi.org/10.1021/es402472x
  30. Kim, I., Yamashita, N. and Tanaka, H. (2009). Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan, J. Hazard. Mater., 166(2-3), 1134-1140. https://doi.org/10.1016/j.jhazmat.2008.12.020
  31. Knappe, D.R.U. (2006). Surface chemistry effects in activated carbon adsorption of industrial pollutants, Interface Sci. Technol., V(10), 155-177. https://doi.org/10.1016/S1573-4285(06)80078-5
  32. Kohler, C., Venditti, S., Igos, E., Klepiszewski, K., Benetto, E. and Cornelissen, A. (2012). Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment, J. Hazard. Mater., 239-240, 70-77. https://doi.org/10.1016/j.jhazmat.2012.06.006
  33. Kolkman, A., Martijn, B.J., Vughs, D., Baken, K.A. and van Wezel, A.P. (2015). Tracing nitrogenous disinfection byproducts after medium pressure UV water treat- ment by stable isotope labeling and high resolution mass spectrometry, Environ. Sci. Technol., 49(7), 4458-4465. https://doi.org/10.1021/es506063h
  34. Koppenol, W.H., Stanbury, D.M. and Bounds, P.L. (2010). Electrode potentials of partially reduced oxygen species, from dioxygen to water, Free Radical Biol. Med., 49, 317-322. https://doi.org/10.1016/j.freeradbiomed.2010.04.011
  35. Kosaka, K., Asami, M., Ohkubo, K., Iwamoto, T., Tanaka, Y., Koshino, H., Echigo, S. and Akiba, M. (2014). Identification of a New N-nitrosodimethylamine precursor in sewage containing industrial effluents, Environ. Sci. Technol., 48(19), 11243-11250. https://doi.org/10.1021/es502284t
  36. Kosek, K., Luczkiewicz, A., Fudala-Ksiazek, S., Jankowska, K., Szopinska, M., Svahn, O., Tranckner, J., Kaiser, A., Langas, V. and Bjorklund, E. (2020). Implementation of advanced micropollutants removal technologies in wastewater treatment plants (WWTPs)-Examples and challenges based on selected EU countries, Environ. Sci. Policy, 112, 213-226. https://doi.org/10.1016/j.envsci.2020.06.011
  37. Kovalova, L., Knappe, D.R., Lehnberg, K., Kazner, C. and Hollender, J. (2013). Removal of highly polar micropollutants from wastewater by powdered activated carbon, Environ. Sci. Pollut. Res., 20(6), 3607-3615. https://doi.org/10.1007/s11356-012-1432-9
  38. Krahnstover, T. and Wintgens, T. (2018). Separating powdered activated carbon (PAC) from wastewater-Technical process options and assessment of removal efficiency, J. Environ. Chem. Eng., 6(5), 5744-5762. https://doi.org/10.1016/j.jece.2018.09.001
  39. Lee, C., Yoon, J. and von Gunten, U. (2007). Oxidative degradation of N-nitro- sodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide, Water Res., 41(3), 581-590. https://doi.org/10.1016/j.watres.2006.10.033
  40. Lee, M., Zimmermann-Steffens, S.G., Arey, J.S., Fenner, K. and von Gunten, U. (2015). Development of prediction models for the reactivity of organic compounds with ozone in aqueous solution by quantum chemical calculations: The role of delocalized and localized molecular orbitals, Environ. Sci. Technol., 49(16), 9925-9935. https://doi.org/10.1021/acs.est.5b00902
  41. Lee, M., Blum, L.C., Schmid, E., Fenner, K. and von Gunten, U. (2017). A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms, Environ. Sci. Process Impacts, 19(3), 465-476. https://doi.org/10.1039/C6EM00584E
  42. Lee, Y., Escher, B.I. and Von Gunten, U. (2008). Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens, Environ. Sci. Technol., 42(17), 6333-6339. https://doi.org/10.1021/es7023302
  43. Lee, Y. and Von Gunten, U. (2012). Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment, Water Res., 46(19), 6177-6195. https://doi.org/10.1016/j.watres.2012.06.006
  44. Lee, Y., Gerrity, D., Lee, M., Bogeat, A.E., Salhi, E., Gamage, S., Trenholm, R.A., Wert, E.C., Snyder, S.A. and von Gunten, U. (2013). Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information, Environ. Sci. Technol., 47(11), 5872-5881. https://doi.org/10.1021/es400781r
  45. Lee, Y., Kovalova, L., McArdell, C.S. and von Gunten, U. (2014). Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent, Water Res., 64, 134-148. https://doi.org/10.1016/j.watres.2014.06.027
  46. Lee, Y. and von Gunten, U. (2016). Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: Reaction kinetics, transformation products, and changes of biological effects, Environ. Sci.: Water Res. Technol., 2(3), 421-442. https://doi.org/10.1039/c6ew00025h
  47. Lee, Y., Gerrity, D., Lee, M., Gamage, S., Pisarenko, A., Trenholm, R.A., Canonica, S., Snyder, S.A. and von Gunten, U. (2016). Organic contaminant abatement in reclaimed water by UV/H2O2 and a combined process consisting of O3/H2O2 followed by UV/H2O2: Prediction of abatement efficiency, energy consumption, and byproduct formation, Environ. Sci. Technol., 50(7), 3809-3819. https://doi.org/10.1021/acs.est.5b04904
  48. Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S. and Wang, X.C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ, 473, 619-641. https://doi.org/10.1016/j.scitotenv.2013.12.065
  49. Magdeburg, A., Stalter, D., Schlusener, M., Ternes, T. and Oehlmann, J. (2014). Evaluating the efficiency of advanced wastewater treatment: Target analysis of organic contaminants and (geno-) toxicity assessment tell a different story, Water Res., 50, 35-47. https://doi.org/10.1016/j.watres.2013.11.041
  50. Mathon, B., Coquery, M., Liu, Z., Penru, Y., Guillon, A., Esperanza, M., Miege, C. and Choubert, J.M. (2021). Ozonation of 47 organic micropollutants in secondary treated municipal effluents: Direct and indirect kinetic reaction rates and modelling, Chemosphere, 262.
  51. Mailler, R., Gasperi, J., Coquet, Y., Deshayes, S., Zedek, S., Cren-Olive, C., Cartiser, N., Eudes, V., Bressy, A., Caupos, E. and Rocher, V. (2015). Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents, Water Res., 72, 315-330. https://doi.org/10.1016/j.watres.2014.10.047
  52. Margot, J., Kienle, C., Magnet, A., Weil, M., Rossi, L., De Alencastro, L.F., Abegglen, C., Thonney, D., Chevre, N., Scharer, M. and Barry, D.A. (2013). Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon?, Sci. Total Environ., 461, 480-498. https://doi.org/10.1016/j.scitotenv.2013.05.034
  53. Martijn, B.J., Boersma, M.G., Vervoort, J.M., Rietjens, I.M.C.M. and Kruithof, J.C. (2014). Formation of genotoxic compounds by medium pressure ultraviolet treatment of nitrate-rich water, Desalin. Water Treat., 52(34-36), 6275-6281. https://doi.org/10.1080/19443994.2014.925654
  54. Martijn, B.J., Kruithof, J.C., Hughes, R.M., Mastan, R.A., Van Rompay, A.R. and Malley, J.P. (2015). Induced genotoxicity in nitrate-rich water treated with medium-pressure ultraviolet processes, AWWA, 107(6), E301-E312. https://doi.org/10.5942/jawwa.2015.107.0079
  55. McArdell, C.S. and Meier, A. (2019). "The Swiss approach in reducing micropollutants in wastewater", STOWA Workshop, Beating micropollutants in WWTPs, 5 Nov 2019, Amsterdam, Netherland.
  56. Merenyi, G., Lind, J., Naumov, S. and von Sonntag, C. (2010). The reaction of ozone with the hydroxide ion: mechanistic considerations based on thermokinetic and quantum chemical calculations and the role of HO4- in superoxide dismutation, Chem. Eur. J., 16(4), 1372-1377. https://doi.org/10.1002/chem.200802539
  57. Mestankova, H., Schirmer, K., Escher, B.I., von Gunten, U. and Canonica, S. (2012). Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes, Environ. Pollut., 161, 30-35. https://doi.org/10.1016/j.envpol.2011.09.018
  58. Mestankova, H., Schirmer, K., Canonica, S. and von Gunten, U. (2014). Development of mutagenicity during degradation of N-nitrosamines by advanced oxidation processes, Water Res., 66, 399-410. https://doi.org/10.1016/j.watres.2014.08.012
  59. Metzger, S., Rossler, A., Turk, J., Antakyali, D., Schulz, J., Wunderlin, P. and Meier, A. (2015). Status quo der Erweiterung von Klaranlagen um eine Stufe zur gezielten Spurenstoffelimination, Wasserwirtsch, Wassertech., 14-19.
  60. Miklos, D.B., Hartl, R., Michel, P., Linden, K.G., Drewes, J.E., and Hubner, U. (2018a). UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents, Water Res., 136, 169-179. https://doi.org/10.1016/j.watres.2018.02.044
  61. Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E. and Hubner, U. (2018b). Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review, Water Res., 139, 118-131. https://doi.org/10.1016/j.watres.2018.03.042
  62. Minakata, D., Li, K., Westerhoff, P. and Crittenden, J. (2009). Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants, Environ. Sci. Technol., 43(16), 6220-6227. https://doi.org/10.1021/es900956c
  63. Ministry of Environment (MOE). (2019a). Statistics of sewerage.
  64. Ministry of Environment (MOE). (2019b). Evaluation of the deterioration of public sewage treatment facilities and feasibility study for improvement, 38-39.
  65. Mitch, W.A., Sharp, J.O., Trussell, R.R., Valentine, R.L., Alvarez-Cohen, L. and Sedlak, D.L. (2003). N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review, Environ. Eng. Sci. 20(5), 389-404. https://doi.org/10.1089/109287503768335896
  66. Mulder, M., Antakyali, D. and Ante, S. (2015). Costs of removal of micropollutants from effluents of municipal wastewater treatment plants-general cost estimates for the Netherlands based on implemented full scale post treatments of effluents of wastewater treatment plants in Germany and Switzerland, STOWA and Waterboard the Dommel, the Netherlands, 55.
  67. Nam, S.W., Choi, D.J., Kim, S.K., Her, N. and Zoh, K.D. (2014). Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon, J. Hazard. Mater., 270, 144-152. https://doi.org/10.1016/j.jhazmat.2014.01.037
  68. Naumov, S., Mark, G., Jarocki, A. and von Sonntag, C. (2010). The reactions of nitrite ion with ozone in aqueous solution - new experimental data and quantum-chemical considerations, Ozone Sci. Eng., 32(6), 430-434. https://doi.org/10.1080/01919512.2010.522960
  69. Padhye, L.P., Hertzberg, B., Yushin, G. and Huang, C.H. (2011). N-nitrosamines formation from secondary amines by nitrogen fixation on the surface of activated carbon, Environ. Sci. Technol., 45(19), 8368-8376. https://doi.org/10.1021/es201696e
  70. Padhye, L., Wang, P., Karanfil, T. and Huang, C.H. (2010). Unexpected role of activated carbon in promoting transformation of secondary amines to N-nitrosamines, Environ. Sci. Technol., 44(11), 4161-4168. https://doi.org/10.1021/es903916t
  71. Park, N. and Jeon, J. (2021). Emerging pharmaceuticals and industrial chemicals in Nakdong River, Korea: Identification, quantitative monitoring, and prioritization, Chemosphere, 263, 128014. https://doi.org/10.1016/j.chemosphere.2020.128014
  72. Pesqueira, J.F., Pereira, M.F.R. and Silva, A.M. (2020). Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: A review, J. Clean. Prod., 261, 121078. https://doi.org/10.1016/j.jclepro.2020.121078
  73. Pines, D.S. and Reckhow, D.A. (2002). Effect of dissolved cobalt(II) on the ozonation of oxalic acid, Environ. Sci. Technol. 36(19), 4046-4051. https://doi.org/10.1021/es011230w
  74. Ra, J., Yoom, H., Son, H. and Lee, Y. (2020). Occurrence and transformation of gabapentin in urban water quality engineering: Rapid formation of nitrile from amine during drinking water chlorination, Water Res., 184, 116123. https://doi.org/10.1016/j.watres.2020.116123
  75. Rahman, S.M., Eckelman, M.J., Onnis-Hayden, A. and Gu, A.Z. (2018). Comparative life cycle assessment of advanced wastewater treatment processes for removal of chemicals of emerging concern, Environ. Sci. Technol., 52(19), 11346-11358. https://doi.org/10.1021/acs.est.8b00036
  76. Rice, R.G., Robson, C.M., Miller, G.W. and Hill, A.G. (1981). Uses of ozone in drinking water treatment, AWWA, 73(1), 44-57. https://doi.org/10.1002/j.1551-8833.1981.tb04637.x
  77. Rizzo, L., Malato, S., Antakyali, D., Beretsou, V.G., Dolic, M.B., Gernjak, W., Heath, E., Ivancev-Tumbas, I., Karaolia, P., Ribeiro, A.R.L. and Fatta-Kassinos, D. (2019). Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater, Sci. Total Environ., 655, 986-1008. https://doi.org/10.1016/j.scitotenv.2018.11.265
  78. Rosario-Ortiz, F.L., Wert, E.C. and Snyder, S.A. (2010). Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater, Water Res., 44(5), 1440-1448. https://doi.org/10.1016/j.watres.2009.10.031
  79. Rosenfeldt, E.J., Chen, P.J., Kullman, S. and Linden, K.G. (2007). Destruction of estrogenic activity in water using UV advanced oxidation, Sci. Total Environ., 377(1), 105-113. https://doi.org/10.1016/j.scitotenv.2007.01.096
  80. Schwaller, C., Hoffmann, G., Hiller, C.X., Helmreich, B. and Drewes, J.E. (2021). Inline dosing of powdered activated carbon and coagulant prior to ultrafiltration at pilot-scale-Effects on trace organic chemical removal and operational stability, Chem. Eng. J., 414, 128801. https://doi.org/10.1016/j.cej.2021.128801
  81. Semitsoglou-Tsiapou, S., Templeton, M.R., Graham, N.J.D., Mandal, S., Leal, L.H. and Kruithof, J.C. (2018). Potential formation of mutagenicity by low pressure-UV/H2O2 during the treatment of nitrate-rich source waters, Environ. Sci.: Water Res. Technol., 4(9), 1252-1261. https://doi.org/10.1039/c7ew00389g
  82. Shah, A.D., Dotson, A.D., Linden, K.G. and Mitch, W.A. (2011). Impact of UV disinfection combined with chlorination/ chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water, Environ. Sci. Technol., 45, 3657-3664. https://doi.org/10.1021/es104240v
  83. Sharpless, C.M. and Linden, K.G. (2003). Experimental and model comparisons of low- and medium-pressure Hg lamps for the Direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water, Environ. Sci. Technol., 37(9), 1933-1940. https://doi.org/10.1021/es025814p
  84. Sigmund, G., Gharasoo, M., Huffer, T. and Hofmann, T. (2020). Deep learning neural network approach for predicting the sorption of ionizable and polar organic pollutants to a wide range of carbonaceous materials, Environ. Sci. Technol., 54(7), 4583-4591. https://doi.org/10.1021/acs.est.9b06287
  85. Son, H., Yoo, S.J., Roh, J.S. and Yoo, P.J. (2009). Biological activated carbon (BAC) process in water treatment, J. Korean Soc. Environ. Eng., 31(4), 308-323.
  86. Son, H. and Jang, S. (2011). Occurrence of residual pharmaceuticals and fate, residue and toxic effect in drinking water resources, J. Korean Soc. Environ. Eng., 33(6), 453-479. https://doi.org/10.4491/KSEE.2011.33.6.453
  87. Son, H., Choi, S., An, B., Lee, H. and Yoom, H.S. (2021). Effect of changes in physical properties of granular activated carbon (GAC) on the adsorption of natural organic matter (NOM) with increasing the number of thermal regeneration: Pore size and NOM molecular weight, J. Korean Soc. Environ. Eng., 43(7), 537-546. https://doi.org/10.4491/KSEE.2021.43.7.537
  88. Staehelin, J. and Hoigne, J. (1985). Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions, Environ. Sci. Technol., 19(12), 1206-1213. https://doi.org/10.1021/es00142a012
  89. Stalter, D., Magdeburg, A. and Oehlmann, J. (2010b). Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery, Water Res., 44(8), 2610-2620. https://doi.org/10.1016/j.watres.2010.01.023
  90. Stalter, D., Magdeburg, A., Weil, M., Knacker, T. and Oehlmann, J. (2010a). Toxication or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater treatment with the rainbow trout, Water Res., 44(2), 439-448. https://doi.org/10.1016/j.watres.2009.07.025
  91. Stefan, M.I. and Bolton, J.R. (2002). UV direct photolysis of N-nitrosodimethylamine (NDMA): kinetic and product study, Helv. Chim. Acta, 85 (5), 1416. https://doi.org/10.1002/1522-2675(200205)85:5<1416::AID-HLCA1416>3.0.CO;2-I
  92. Streicher, J., Ruhl, A.S., Gnirss, R. and Jekel, M. (2016). Where to dose powdered activated carbon in a wastewater treatment plant for organic micro-pollutant removal, Chemosphere, 156, 88-94. https://doi.org/10.1016/j.chemosphere.2016.04.123
  93. Tong, Y., McNamara, P.J. and Mayer, B.K. (2019). Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium, Environ. Sci. Water Res. Technol., 5(5), 821-838. https://doi.org/10.1039/C8EW00938D
  94. von Gunten, U. (2003). Ozonation of drinking water: part I. Oxidation kinetics and product formation, Water Res., 37(7), 1443-1467. https://doi.org/10.1016/S0043-1354(02)00457-8
  95. von Gunten, U. and Oliveras, Y. (1998). Advanced oxidation of bromide- containing waters: bromate formation mechanisms, Environ. Sci. Technol., 32, 63-70. https://doi.org/10.1021/es970477j
  96. von Sonntag, C. and von Gunten, U. (2012). Chemistry of Ozone in Water and Wastewater Treatment. IWA Publishing, London.
  97. Wildhaber, Y.S., Mestankova, H., Schaerer, M., Schirmer, K., Salhi, E. and von Gunten, U. (2015). Novel test procedure to evaluate the treatability of wastewater with ozone, Water Res., 75, 324-335. https://doi.org/10.1016/j.watres.2015.02.030
  98. Woermann, M. and Sures, B. (2020). Ecotoxicological effects of micropollutant-loaded powdered activated carbon emitted from wastewater treatment plants on Daphnia magna, Sci. Tot. Environ., 746, 141104. https://doi.org/10.1016/j.scitotenv.2020.141104
  99. Wols, B.A. and Hofman-Caris, C.H.M. (2012). Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water, Water Res., 46 (9), 2815-2827. https://doi.org/10.1016/j.watres.2012.03.036
  100. Worch, E. (2012). Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, Walter de Gruyter.
  101. Yu, H.W., Anumol, T., Park, M., Pepper, I., Scheideler, J. and Snyder, S.A. (2015). On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process, Water Res., 81, 250-260. https://doi.org/10.1016/j.watres.2015.05.064
  102. Zhang, K., Zhong, S. and Zhang, H. (2020). Predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with machine learning, Environ. Sci. Technol., 54(11), 7008-7018. https://doi.org/10.1021/acs.est.0c02526
  103. Zietzschmann, F., Altmann, J., Hannemann, C. and Jekel, M. (2015). Lab-testing, predicting, and modeling multi-stage activated carbon adsorption of organic micro-pollutants from treated wastewater, Water Res., 83, 52-60. https://doi.org/10.1016/j.watres.2015.06.017
  104. Zietzschmann, F., Aschermann, G. and Jekel, M. (2016). Comparing and modeling organic micro-pollutant adsorption onto powdered activated carbon in different drinking waters and WWTP effluents, Water Res., 102, 190-201. https://doi.org/10.1016/j.watres.2016.06.041
  105. Zietzschmann, F., Worch, E., Altmann, J., Ruhl, A.S., Sperlich, A., Meinel, F. and Jekel, M. (2014). Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater, Water Res., 65, 297-306. https://doi.org/10.1016/j.watres.2014.07.043
  106. Zimmermann, S.G., Wittenwiler, M., Hollender, J., Krauss, M., Ort, C., Siegrist, H. and von Gunten, U. (2011). Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: micropollutant oxidation, by-product formation and disinfection, Water Res. 45(2), 605-617. https://doi.org/10.1016/j.watres.2010.07.080