DOI QR코드

DOI QR Code

Recent progress (2015-2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb1, a main active ingredient in Panax ginseng Meyer

  • Lin, Zuan (Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University) ;
  • Xie, Rongfang (Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University) ;
  • Zhong, Chenhui (Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University) ;
  • Huang, Jianyong (Department of Pharmacy, Fujian Medical University Union Hospital) ;
  • Shi, Peiying (Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University) ;
  • Yao Hong (Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University)
  • Received : 2020.11.29
  • Accepted : 2021.07.27
  • Published : 2022.01.01

Abstract

Ginsenoside Rb1 (Rb1), one of the most important ingredients in Panax ginseng Meyer, has been confirmed to have favorable activities, including reducing antioxidative stress, inhibiting inflammation, regulating cell autophagy and apoptosis, affecting sugar and lipid metabolism, and regulating various cytokines. This study reviewed the recent progress on the pharmacological effects and mechanisms of Rb1 against cardiovascular and nervous system diseases, diabetes, and their complications, especially those related to neurodegenerative diseases, myocardial ischemia, hypoxia injury, and traumatic brain injury. This review retrieved articles from PubMed and Web of Science that were published from 2015 to 2020. The molecular targets or pathways of the effects of Rb1 on these diseases are referring to HMGB1, GLUT4, 11β-HSD1, ERK, Akt, Notch, NF-κB, MAPK, PPAR-γ, TGF-β1/Smad pathway, PI3K/mTOR pathway, Nrf2/HO-1 pathway, Nrf2/ARE pathway, and MAPK/NF-κB pathway. The potential effects of Rb1 and its possible mechanisms against diseases were further predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and disease ontology semantic and enrichment (DOSE) analyses with the reported targets. This study provides insights into the therapeutic effects of Rb1 and its mechanisms against diseases, which is expected to help in promoting the drug development of Rb1 and its clinical applications.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China of China (81973558), and the Joint Funds for the Innovation of Science and Technology, Fujian province (2017Y9123 and 2019Y9068).

References

  1. Yao L, Wang J, Sun JC, He JP, Paek KY, Park SY, Huang LQ, Gao WY. A WRKY transcription factor, PgWRKY4X, positively regulates ginsenoside biosynthesis by activating squalene epoxidase transcription in Panax ginseng. Ind Crop Prod 2020;154:112671. https://doi.org/10.1016/j.indcrop.2020.112671
  2. Kim SW, Gupta R, Lee SH, Min CW, Agrawal GK, Rakwal R, Kim JB, Jo IH, Park SY, Kim JK, et al. An integrated biochemical, proteomics, and metabolomics approach for supporting medicinal value of Panax ginseng fruits. Front Plant Sci 2016;7:994. https://doi.org/10.3389/fpls.2016.00994
  3. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-98. https://doi.org/10.1016/j.jgr.2014.12.005
  4. Lee JI, Park KS, Cho IH. Panax ginseng: a candidate herbal medicine for autoimmune disease. J Ginseng Res 2019;43:342-8. https://doi.org/10.1016/j.jgr.2018.10.002
  5. Liu D, Liu T, Teng Y, Chen W, Zhao L, Li X. Ginsenoside Rb1 inhibits hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells by regulating microRNA-25. Exp Ther Med 2017;14:2895-902. https://doi.org/10.3892/etm.2017.4889
  6. Hou J, Kim S. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast. Biochem Biophys Res Commun 2018;499:381-8. https://doi.org/10.1016/j.bbrc.2018.03.170
  7. Jiang Y, Li M, Lu Z, Wang Y, Yu X, Sui D, Fu L. Ginsenoside Rg3 induces ginsenoside Rb1-comparable cardioprotective effects independent of reducing blood pressure in spontaneously hypertensive rats. Exp Ther Med 2017;14:4977-85.
  8. Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol 2018;9:423. https://doi.org/10.3389/fphar.2018.00423
  9. Ahmed T, Raza SH, Maryam A, Setzer WN, Braidy N, Nabavi SF, de Oliveira MR, Nabavi SM. Ginsenoside Rb1 as a neuroprotective agent: a review. Brain Res Bull 2016;125:30-43. https://doi.org/10.1016/j.brainresbull.2016.04.002
  10. Zheng Q, Bao XY, Zhu PC, Tong Q, Zheng GQ, Wang Y. Ginsenoside Rb1 for myocardial Ischemia/Reperfusion injury: preclinical evidence and possible mechanisms. Oxid Med Cell Longev 2017;2017:6313625.
  11. Powers WJ. Acute ischemic stroke. N Engl J Med 2020;383:252-60. https://doi.org/10.1056/NEJMcp1917030
  12. Thommessen B, Naess H, Logallo N, Kvistad CE, Waje-Andreassen U, Ihle-Hansen H, Ihle-Hansen H, Thomassen L, Ronning OM. Tenecteplase versus alteplase after acute ischemic stroke at high age. Int J Stroke 2020. 1747493020938306.
  13. Li Y, Xu QQ, Shan CS, Shi YH, Wang Y, Zheng GQ. Combined use of emodin and ginsenoside Rb1 exerts synergistic neuroprotection in cerebral ischemia/reperfusion rats. Front Pharmacol 2018;9:943. https://doi.org/10.3389/fphar.2018.00943
  14. Chen W, Guo Y, Yang W, Zheng P, Zeng J, Tong W. Involvement of connexin 40 in the protective effects of ginsenoside Rb1 against traumatic brain injury. Cell Mol Neurobiol 2016;36:1057-65. https://doi.org/10.1007/s10571-015-0299-y
  15. Gao X, Zhang X, Cui L, Chen R, Zhang C, Xue J, Zhang L, He W, Li J, Wei S, et al. Ginsenoside Rb1 promotes motor functional recovery and axonal regeneration in post-stroke mice through cAMP/PKA/CREB signaling pathway. Brain Res Bull 2020;154:51-60. https://doi.org/10.1016/j.brainresbull.2019.10.006
  16. Chen H, Shen J, Li H, Zheng X, Kang D, Xu Y, Chen C, Guo H, Xie L, Wang G, et al. Ginsenoside Rb1 exerts neuroprotective effects through regulation of lactobacillus helveticus abundance and GABAA receptor expression. J Ginseng Res 2020;44:86-95. https://doi.org/10.1016/j.jgr.2018.09.002
  17. Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990;13:171-82. https://doi.org/10.1146/annurev.ne.13.030190.001131
  18. Molz S, Decker H, Dal-Cim T, Cremonez C, Cordova FM, Leal RB, Tasca CI. Glutamate-induced toxicity in hippocampal slices involves apoptotic features and p38 MAPK signaling. Neurochem Res 2008;33:27-36. https://doi.org/10.1007/s11064-007-9402-1
  19. Zhao J, Yu S, Zheng W, Feng G, Luo G, Wang L, Zhao Y. Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res 2010;35:374-9. https://doi.org/10.1007/s11064-009-0065-y
  20. Guo Y, Wang LP, Li C, Xiong YX, Yan YT, Zhao LQ, Li SD, Sun J, Luo HY, Xian CJ. Effects of ginsenoside Rb1 on expressions of phosphorylation Akt/p-mTOR/p-PTEN in artificial abnormal hippocampal microenvironment in Rats. Neurochem Res 2018;43:1927-37. https://doi.org/10.1007/s11064-018-2612-x
  21. Wang S, Li M, Guo Y, Li C, Wu L, Zhou XF, Luo Y, An D, Li S, Luo H, et al. Effects of Panax notoginseng ginsenoside Rb1 on abnormal hippocampal microenvironment in rats. J Ethnopharmacol 2017;202:138-46. https://doi.org/10.1016/j.jep.2017.01.005
  22. Dong X, Zheng L, Lu S, Yang Y. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: involvement of anti-oxidant signaling. Geriatr Gerontol Int 2017;17:338-45. https://doi.org/10.1111/ggi.12699
  23. Liu A, Zhu W, Sun L, Han G, Liu H, Chen Z, Zhuang L, Jiang W, Xue X. Ginsenoside Rb1 administration attenuates focal cerebral ischemic reperfusion injury through inhibition of HMGB1 and inflammation signals. Exp Ther Med 2018;16:3020-6.
  24. Moreira PI, Santos RX, Zhu X, Lee HG, Smith MA, Casadesus G, Perry G. Autophagy in Alzheimer's disease. Expert Rev Neurother 2010;10:1209-18. https://doi.org/10.1586/ern.10.84
  25. Wang P, Lin C, Wu S, Huang K, Wang Y, Bao X, Zhang F, Huang Z, Teng H. Inhibition of autophagy is involved in the protective effects of ginsenoside Rb1 on spinal cord injury. Cell Mol Neurobiol 2018;38:679-90. https://doi.org/10.1007/s10571-017-0527-8
  26. Lee MJ, Jang M, Choi J, Chang BS, Kim DY, Kim SH, Kwak YS, Oh S, Lee JH, Chang BJ, et al. Korean red ginseng and ginsenoside-Rb1/-Rg1 alleviate experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Mol Neurobiol 2016;53:1977-2002. https://doi.org/10.1007/s12035-015-9131-4
  27. Liu ZG, Li Y, Jiao JH, Long H, Xin ZY, Yang XY. MicroRNA regulatory pattern in spinal cord ischemia-reperfusion injury. Neural Regen Res 2020;15:2123-30. https://doi.org/10.4103/1673-5374.280323
  28. Zhu P, Li JX, Fujino M, Zhuang J, Li XK. Development and treatments of inflammatory cells and cytokines in spinal cord ischemia-reperfusion injury. Mediat Inflamm 2013;2013:701970. https://doi.org/10.1155/2013/701970
  29. Ning N, Dang X, Bai C, Zhang C, Wang K. Panax notoginsenoside produces neuroprotective effects in rat model of acute spinal cord ischemia-reperfusion injury. J Ethnopharmacol 2012;139:504-12. https://doi.org/10.1016/j.jep.2011.11.040
  30. Zhao D, Zhang M, Yuan H, Meng C, Zhang B, Wu H. Ginsenoside Rb1 protects against spinal cord ischemia-reperfusion injury in rats by downregulating the Bax/Bcl-2 ratio and caspase-3 and p-Ask-1 levels. Exp Mol Pathol 2018;105:229-35. https://doi.org/10.1016/j.yexmp.2018.09.001
  31. Ye JT, Li FT, Huang SL, Xue JL, Aihaiti Y, Wu H, Liu RX, Cheng B. Effects of ginsenoside Rb1 on spinal cord ischemia-reperfusion injury in rats. J Orthop Surg Res 2019;14:259. https://doi.org/10.1186/s13018-019-1299-2
  32. Zhu P, Hata R, Nakata K, Cao F, Samukawa K, Hiroko F, Sakanaka M. Intravenous infusion of ginsenoside Rb1 ameliorates compressive spinal cord injury through upregulation of Bcl-xL and VEGF. Int J Neurol Neurother 2015;2:1017.
  33. Li G, Liu X, Liu Z, Su Z. Interactions of connexin 43 and aquaporin-4 in the formation of glioma-induced brain edema. Mol Med Rep 2015;11:1188-94. https://doi.org/10.3892/mmr.2014.2867
  34. Huang F, Li YN, Yin F, Wu YT, Zhao DX, Li Y, Zhang YF, Zhu QS. Ginsenoside Rb1 inhibits neuronal apoptosis and damage, enhances spinal aquaporin 4 expression and improves neurological deficits in rats with spinal cord ischemiareperfusion injury. Mol Med Rep 2015;11:3565-72. https://doi.org/10.3892/mmr.2015.3162
  35. Li YN, Gao ZW, Li R, Zhang YF, Zhu QS, Huang F. Aquaporin 4 regulation by ginsenoside Rb1 intervenes with oxygen-glucose deprivation/reoxygenation-induced astrocyte injury. MEDICINE 2019;98:e17591. https://doi.org/10.1097/MD.0000000000017591
  36. Yeung AWK, Tzvetkov NT, Georgieva MG, Ognyanov IV, Kordos K, Jozwik A, Kuhl T, Perry G, Petralia MC, Mazzon E, et al. Reactive oxygen species and their impact in neurodegenerative diseases: literature landscape analysis. Antioxidants Redox Signal 2021;34:402-20. https://doi.org/10.1089/ars.2019.7952
  37. Leissring MA, Turner AJ. Regulation of distinct pools of amyloid beta-protein by multiple cellular proteases. Alzheimer's Res Ther 2013;5:37. https://doi.org/10.1186/alzrt194
  38. Hwang JY, Shim JS, Song MY, Yim SV, Lee SE, Park KS. Proteomic analysis reveals that the protective effects of ginsenoside Rb1 are associated with the actin cytoskeleton in beta-amyloid-treated neuronal cells. J Ginseng Res 2016;40:278-84. https://doi.org/10.1016/j.jgr.2015.09.004
  39. Wang YR, Li Y, Yang WY, Gao SY, Lin JW, Wang TQ, Zhou KL, Hu HY. Ginsenoside Rb1 inhibit apoptosis in rat model of Alzheimer's disease induced by A beta(1-40). Am J Transl Res 2018;10. 796-+.
  40. Zhao J, Lu S, Yu H, Duan S, Zhao J. Baicalin and ginsenoside Rb1 promote the proliferation and differentiation of neural stem cells in Alzheimer's disease model rats. Brain Res 2018;1678:187-94. https://doi.org/10.1016/j.brainres.2017.10.003
  41. Li N, Zhou L, Li W, Liu Y, Wang J, He P. Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer's disease mouse model: a metabolomics study. J Chromatogr B Analyt Technol Biomed Life Sci 2015;985:54-61. https://doi.org/10.1016/j.jchromb.2015.01.016
  42. Zhang S, Zhu D, Li H, Zhang H, Feng C, Zhang W. Analyses of mRNA profiling through RNA sequencing on a SAMP8 mouse model in response to ginsenoside Rg1 and Rb1 treatment. Front Pharmacol 2017;8:88.
  43. Miao HH, Zhang Y, Ding GN, Hong FX, Dong P, Tian M. Ginsenoside Rb1 attenuates isoflurane/surgery-induced cognitive dysfunction via Inhibiting neuroinflammation and oxidative stress. Biomed Environ Sci 2017;30:363-72. https://doi.org/10.3967/bes2017.047
  44. Li J, Zeng B, Hu X, Li Z, Zhang D, Yang G, Dai J, Zeng X. Protective effects of ginsenoside Rb1 against blood-brain barrier damage induced by human immunodeficiency virus-1 Tat protein and methamphetamine in Sprague-dawley rats. Am J Chin Med 2018;46:551-66. https://doi.org/10.1142/s0192415x18500283
  45. Qu SG, Meng XJ, Liu Y, Zhang XP, Zhang YL. Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the alpha-synuclein/PSD-95 pathway. Aging-US 2019;11:1934-64. https://doi.org/10.18632/aging.101884
  46. Zhang YL, Liu Y, Kang XP, Dou CY, Zhuo RG, Huang SQ, Peng L, Wen L. Ginsenoside Rb1 confers neuroprotection via promotion of glutamate transporters in a mouse model of Parkinson's disease. Neuropharmacology 2018;131:223-37. https://doi.org/10.1016/j.neuropharm.2017.12.012
  47. Ardah MT, Paleologou KE, Lv G, Menon SA, Abul Khair SB, Lu JH, Safieh-Garabedian B, Al-Hayani AA, Eliezer D, Li M, et al. Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils. Neurobiol Dis 2015;74:89-101. https://doi.org/10.1016/j.nbd.2014.11.007
  48. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 2018;122:877-902. https://doi.org/10.1161/CIRCRESAHA.117.311401
  49. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 2018;117:76-89. https://doi.org/10.1016/j.freeradbiomed.2018.01.024
  50. Fernandez-Moriano C, Gonzalez-Burgos E, Iglesias I, Lozano R, Gomez-Serranillos MP. Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stress-mediated neurotoxicity in an in vitro neuronal model. PLoS One 2017:12. 0182933.
  51. Liu X, Gu X, Yu M, Zi Y, Yu H, Wang Y, Xie Y, Xiang L. Effects of ginsenoside Rb1 on oxidative stress injury in rat spinal cords by regulating the eNOS/Nrf2/HO-1 signaling pathway. Exp Ther Med 2018;16:1079-86.
  52. Jang M, Lee MJ, Choi JH, Kim EJ, Nah SY, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. Ginsenoside Rb1 attenuates acute inflammatory nociception by Inhibition of neuronal ERK phosphorylation by regulation of the Nrf2 and NFkappaB pathways. J Pain 2016;17:282-97. https://doi.org/10.1016/j.jpain.2015.10.007
  53. Shi Y, Miao W, Teng J, Zhang L. Ginsenoside Rb1 protects the brain from damage induced by epileptic seizure via Nrf2/ARE signaling. Cell Physiol Biochem 2018;45:212-25. https://doi.org/10.1159/000486768
  54. Kang X, Hong W, Xie K, Tang H, Tang J, Luo S, Geng W, Jia D. Ginsenoside Rb1 pretreatment reverses hippocampal changes in BDNF/TrkB mRNA and protein in rats subjected to acute immobilization stress. Drug Des Dev Ther 2019;13:2127-34. https://doi.org/10.2147/DDDT.S201135
  55. Lee B, Sur B, Cho SG, Yeom M, Shim I, Lee H, Hahm DH. Ginsenoside Rb1 rescues anxiety-like responses in a rat model of post-traumatic stress disorder. J Nat Med 2016;70:133-44. https://doi.org/10.1007/s11418-015-0943-3
  56. Wang GL, He ZM, Zhu HY, Gao YG, Zhao Y, Yang H, Zhang LX. Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsenoside Rb1, a major active ingredient of Panax ginseng C.A. Meyer. J Ethnopharmacol 2017;204:118-24. https://doi.org/10.1016/j.jep.2017.04.009
  57. Wang GL, Wang YP, Zheng JY, Zhang LX. Monoaminergic and aminoacidergic receptors are involved in the antidepressant-like effect of ginsenoside Rb1 in mouse hippocampus (CA3) and prefrontal cortex. Brain Res 2018;1699:44-53. https://doi.org/10.1016/j.brainres.2018.05.035
  58. Dai SN, Hou AJ, Zhao SM, Chen XM, Huang HT, Chen BH, Kong HL. Ginsenoside Rb1 ameliorates autophagy of hypoxia cardiomyocytes from neonatal rats via AMP-activated protein kinase pathway. Chin J Integr Med 2019;25:521-8. https://doi.org/10.1007/s11655-018-3018-y
  59. Yan X, Xue J, Wu H, Wang S, Liu Y, Zheng S, Zhang C, Yang C. Ginsenoside Rb1 protects hypoxic- and ischemic-damaged cardiomyocytes by regulating expression of miRNAs. Evid Based Complement Alternat Med 2015;2015:171306.
  60. Yan X, Liu J, Wu H, Liu Y, Zheng S, Zhang C, Yang C. Impact of miR-208 and its target gene Nemo-Like Kinase on the protective effect of ginsenoside Rb1 in Hypoxia/Ischemia Injured cardiomyocytes. Cell Physiol Biochem 2016;39:1187-95. https://doi.org/10.1159/000447825
  61. Liu Z, Song L, Zhang P, Cao Z, Hao J, Tian Y, Luo A, Zhang P, Ma J. Ginsenoside Rb1 exerts antiarrhythmic effects by inhibiting INa and ICaL in rabbit ventricular myocytes. Sci Rep 2019;9:20425. https://doi.org/10.1038/s41598-019-57010-9
  62. Ai QD, Sun GB, Luo Y, Dong X, Hu RF, Meng XB, Sun XB. Ginsenoside Rb1 prevents hypoxia-reoxygenation-induced apoptosis in H9c2 cardiomyocytes via an estrogen receptor-dependent crosstalk among the Akt, JNK, and ERK 1/2 pathways using a label-free quantitative proteomics analysis. RSC Adv 2015;5:26346-63. https://doi.org/10.1039/C5RA02432C
  63. Yang J, Zhang F, Shi H, Gao Y, Dong Z, Ma L, Sun X, Li X, Chang S, Wang Z, et al. Neutrophil-derived advanced glycation end products-Nepsilon-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury. Faseb J 2019;33:14410-22. https://doi.org/10.1096/fj.201900115RR
  64. Li G, Qian W, Zhao C. Analyzing the anti-ischemia-reperfusion injury effects of ginsenoside Rb1 mediated through the inhibition of p38alpha MAPK. Can J Physiol Pharmacol 2016;94:97-103. https://doi.org/10.1139/cjpp-2014-0164
  65. Cui YC, Pan CS, Yan L, Li L, Hu BH, Chang X, Liu YY, Fan JY, Sun K, Li Q, et al. Ginsenoside Rb1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway. Sci Rep 2017;7:44579. https://doi.org/10.1038/srep44579
  66. Zhang H, Wang X, Ma Y, Shi Y. The effect of ginsenoside Rb1, diazoxide, and 5-Hydroxydecanoate on hypoxia-reoxygenation Injury of H9C2 cardiomyocytes. Evid Based Complement Alternat Med 2019;2019:6046405.
  67. Li J, Yang YL, Li LZ, Zhang L, Liu Q, Liu K, Li P, Liu B, Qi LW. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis 1863;2017:2835-47.
  68. Li YH, Li YY, Fan GW, Yu JH, Duan ZZ, Wang LY, et al. Cardioprotection of ginsenoside Rb1 against ischemia/reperfusion injury is associated with mitochondrial permeability transition pore opening inhibition. Chin J Integr Med 2016. https://doi.org/10.1007/s11655-015-2433-6.
  69. Zheng X, Wang S, Zou XM, Jing YT, Yang RL, Li SQ, Wang FR. Ginsenoside Rb1 improves cardiac function and remodeling in heart failure. Exp Anim 2017;66:217-28. https://doi.org/10.1538/expanim.16-0121
  70. Yang T, Miao Y, Zhang T, Mu N, Ruan L, Duan J, Zhu Y, Zhang R. Ginsenoside Rb1 inhibits autophagy through regulation of Rho/ROCK and PI3K/mTOR pathways in a pressure-overload heart failure rat model. J Pharm Pharmacol 2018;70:830-8. https://doi.org/10.1111/jphp.12900
  71. Shi G, Liu D, Zhou B, Liu Y, Hao B, Yu S, Wu L, Wang M, Song Z, Wu C, et al. Ginsenoside Rb1 alleviates oxidative low-density lipoprotein-induced vascular endothelium senescence via the SIRT1/Beclin-1/Autophagy Axis. J Cardiovasc Pharmacol 2020;75:155-67. https://doi.org/10.1097/fjc.0000000000000775
  72. Zhang X, Liu MH, Qiao L, Zhang XY, Liu XL, Dong M, Dai HY, Ni M, Luan XR, Guan J, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by skewing macrophages to the M2 phenotype. J Cell Mol Med 2018;22:409-16. https://doi.org/10.1111/jcmm.13329
  73. Zhou P, Xie WJ, Luo Y, Lu S, Dai ZR, Wang RY, Zhang XL, Li G, Sun GB, Sun XB. Inhibitory effects of ginsenoside Rb1 on early atherosclerosis in ApoE-/- mice via Inhibition of apoptosis and enhancing autophagy. Molecules 2018;23:15. https://doi.org/10.3390/molecules23010015
  74. Zhou P, Zhang X, Guo M, Guo R, Wang L, Zhang Z, Lin Z, Dong M, Dai H, Ji X, et al. Ginsenoside Rb1 ameliorates CKD-associated vascular calcification by inhibiting the Wnt/beta-catenin pathway. J Cell Mol Med 2019;23:7088-98. https://doi.org/10.1111/jcmm.14611
  75. Nanao-Hamai M, Son BK, Komuro A, Asari Y, Hashizume T, Takayama KI, Ogawa S, Akishita M. Ginsenoside Rb1 inhibits vascular calcification as a selective androgen receptor modulator. Eur J Pharmacol 2019;859:172546. https://doi.org/10.1016/j.ejphar.2019.172546
  76. Lu H, Zhou X, Kwok HH, Dong M, Liu Z, Poon PY, Luan X. Ngok-Shun Wong R. Ginsenoside Rb1-mediated anti-angiogenesis via regulating PEDF and miR33a through the activation of PPAR-gamma pathway. Front Pharmacol 2017;8:783. https://doi.org/10.3389/fphar.2017.00783
  77. Lu JM, Jiang J, Jamaluddin MS, Liang Z, Yao Q, Chen C. Ginsenoside Rb1 blocks ritonavir-induced oxidative stress and eNOS downregulation through activation of estrogen receptor-beta and upregulation of SOD in human endothelial cells. Int J Mol Sci 2019;20:17. https://doi.org/10.3390/ijms20010017
  78. Jia F, Mou L, Ge H. Protective effects of ginsenoside Rb1 on H2O2-induced oxidative injury in human endothelial cell line (EA.hy926) via miR-210. Int J Immunopathol Pharmacol 2019;33:1-11.
  79. Lan TH, Xu DP, Huang MT, Song JX, Wu HL, Li M. Ginsenoside Rb1 prevents homocysteine-induced EPC dysfunction via VEGF/p38MAPK and SDF-1/CXCR4 activation. Sci Rep 2017;7:13061. https://doi.org/10.1038/s41598-017-13436-7
  80. Smith U. Impaired ('diabetic') insulin signaling and action occur in fat cells long before glucose intoleranceeis insulin resistance initiated in the adipose tissue? Int J Obes Relat Metab Disord 2002;26:897-904. https://doi.org/10.1038/sj.ijo.0802028
  81. Chen W, Wang J, Luo Y, Wang T, Li X, Li A, Li J, Liu K, Liu B. Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue. J Ginseng Res 2016;40:351-8. https://doi.org/10.1016/j.jgr.2015.11.002
  82. Yu X, Ye L, Zhang H, Zhao J, Wang G, Guo C, Shang W. Ginsenoside Rb1 ameliorates liver fat accumulation by upregulating perilipin expression in adipose tissue of db/db obese mice. J Ginseng Res 2015;39:199-205. https://doi.org/10.1016/j.jgr.2014.11.004
  83. Song B, Ding L, Zhang H, Chu Y, Liu X. Ginsenoside Rb1 increases insulin sensitivity through suppressing 11β-hydroxysteroid dehydrogenase type I. Am J Transl Res 2017;9:1049-57.
  84. Chang WH, Tsai YL, Huang CY, Hsieh CC, Chaunchaiyakul R, Fang Y, Lee SD, Kuo CH. Null effect of ginsenoside Rb1 on improving glycemic status in men during a resistance training recovery. J Int Soc Sports Nutr 2015;12:34. https://doi.org/10.1186/s12970-015-0095-6
  85. Lou MD, Li J, Cheng Y, Xiao N, Ma G, Li P, Liu B, Liu Q, Qi LW. Glucagon upregulates hepatic mitochondrial pyruvate carrier 1 through cAMP-responsive element-binding protein; inhibition of hepatic gluconeogenesis by ginsenoside Rb1. Br J Pharmacol 2019;176:2962-76. https://doi.org/10.1111/bph.14758
  86. Tabandeh MR, Jafari H, Hosseini SA, Hashemitabar M. Ginsenoside Rb1 stimulates adiponectin signaling in C2C12 muscle cells through upregulation of AdipoR1 and AdipoR2 proteins. Pharm Biol 2015;53:125-32. https://doi.org/10.3109/13880209.2014.912237
  87. Tabandeh MR, Hosseini SA, Hosseini M. Ginsenoside Rb1 exerts antidiabetic action on C2C12 muscle cells by leptin receptor signaling pathway. J Recept Signal Transduct Res 2017;37:370-8. https://doi.org/10.1080/10799893.2017.1286676
  88. Bastin M, Andreelli F. The gut microbiota and diabetic cardiomyopathy in humans. Diabetes Metab 2020;46:197-202. https://doi.org/10.1016/j.diabet.2019.10.003
  89. Qin L, Wang J, Zhao R, Zhang X, Mei Y. Ginsenoside-Rb1 improved diabetic cardiomyopathy through regulating calcium signaling by alleviating protein O-GlcNAcylation. J Agric Food Chem 2019;67:14074-85. https://doi.org/10.1021/acs.jafc.9b05706
  90. Tao D, Ni N, Zhang T, Li C, Sun Q, Wang L, Mei Y. Accumulation of advanced glycation end products potentiate human retinal capillary endothelial cells mediated diabetic retinopathy. Mol Med Rep 2019;20:3719-27.
  91. Nguyen NH, Kim D, Roy S. High glucose increases binding of lysyl oxidase to extracellular matrix proteins: implications for diabetic retinopathy. Invest Ophthalmol Vis Sci 2020;61:40. https://doi.org/10.1167/iovs.61.4.40
  92. Dong C, Liu P, Wang H, Dong M, Li G, Li Y. Ginsenoside Rb1 attenuates diabetic retinopathy in streptozotocin-induced diabetic rats 1. Acta Cir Bras 2019;34:e201900201. https://doi.org/10.1590/s0102-8650201900201
  93. Fan C, Ma Q, Xu M, Qiao Y, Zhang Y, Li P, Bi Y, Tang M. Ginsenoside Rb1 attenuates high glucose-induced oxidative injury via the NAD-PARP-SIRT Axis in rat retinal capillary endothelial cells. Int J Mol Sci 2019;20:4396. https://doi.org/10.3390/ijms20184396
  94. Bian M, Du X, Wang P, Cui J, Xu J, Gu J, Zhang T, Chen Y. Combination of ginsenoside Rb1 and Rd protects the retina against bright light-induced degeneration. Sci Rep 2017;7:6015. https://doi.org/10.1038/s41598-017-06471-x
  95. Liu Y, Li M, Zhang Z, Ye Y, Zhou J. Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res Rev 2018;42:28-39. https://doi.org/10.1016/j.arr.2017.12.005
  96. Nan F, Sun G, Xie W, Ye T, Sun X, Zhou P, Dong X, Sun J, Sun X, Zhang M. Ginsenoside Rb1 mitigates oxidative stress and apoptosis induced by methylglyoxal in SH-SY5Y cells via the PI3K/Akt pathway. Mol Cell Probes 2019;48:101469. https://doi.org/10.1016/j.mcp.2019.101469
  97. Wang M, Chen Y, Xiong Z, Yu S, Zhou B, Ling Y, Zheng Z, Shi G, Wu Y, Qian X. Ginsenoside Rb1 inhibits free fatty acidsinduced oxidative stress and inflammation in 3T3L1 adipocytes. Mol Med Rep 2017;16:9165-72. https://doi.org/10.3892/mmr.2017.7710
  98. Park SJ, Park M, Sharma A, Kim K, Lee HJ. Black ginseng and ginsenoside Rb1 promote browning by inducing UCP1 expression in 3T3-L1 and primary white adipocytes. Nutrients 2019;11:2747. https://doi.org/10.3390/nu11112747
  99. Shen L, Wang DQ, Lo CC, Arnold M, Tso P, Woods SC, Liu M. Gut vagal afferents are necessary for the eating-suppressive effect of intraperitoneally administered ginsenoside Rb1 in rats. Physiol Behav 2015;152:62-7. https://doi.org/10.1016/j.physbeh.2015.09.012
  100. Wu Y, Huang XF, Bell C, Yu Y. Ginsenoside Rb1 improves leptin sensitivity in the prefrontal cortex in obese mice. CNS Neurosci Ther 2018;24:98-107. https://doi.org/10.1111/cns.12776
  101. Zhang XJ, He C, Tian K, Li P, Su H, Wan JB. Ginsenoside Rb1 attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of the JNK and p38 signaling pathways. Vascul Pharmacol 2015;73:86-95. https://doi.org/10.1016/j.vph.2015.04.003
  102. Wang RX, He RL, Jiao HX, Dai M, Mu YP, Hu Y, Wu ZJ, Sham JS, Lin MJ. Ginsenoside Rb1 attenuates agonist-induced contractile response via inhibition of store-operated calcium entry in pulmonary arteries of normal and pulmonary hypertensive rats. Cell Physiol Biochem 2015;35:1467-81. https://doi.org/10.1159/000373966
  103. Toyokawa Y, Takagi T, Uchiyama K, Mizushima K, Inoue K, Ushiroda C, Kashiwagi S, Nakano T, Hotta Y, Tanaka M, et al. Ginsenoside Rb1 promotes intestinal epithelial wound healing through extracellular signal-regulated kinase and Rho signaling. J Gastroenterol Hepatol 2019;34:1193-200. https://doi.org/10.1111/jgh.14532
  104. Chen T, Xiao L, Zhu L, Ma S, Yan T, Ji H. Anti-asthmatic effects of ginsenoside Rb1 in a mouse model of allergic asthma through relegating Th1/Th2. Inflammation 2015;38:1814-22. https://doi.org/10.1007/s10753-015-0159-4
  105. Lu S, Zhang Y, Li H, Zhang J, Ci Y, Han M. Ginsenoside Rb1 can ameliorate the key inflammatory cytokines TNF-alpha and IL-6 in a cancer cachexia mouse model. BMC Complement Med Ther 2020;20:11. https://doi.org/10.1186/s12906-019-2797-9
  106. Guo S, Chen Y, Pang C, Wang X, Qi J, Mo L, Zhang H, An H, Zhan Y. Ginsenoside Rb1, a novel activator of the TMEM16A chloride channel, augments the contraction of Guinea pig ileum. Pflugers Archiv 2017;469:681-92. https://doi.org/10.1007/s00424-017-1934-x
  107. Yao H, Huang X, Xie Y, Huang X, Ruan Y, Lin X, Huang L, Shi P. Identification of pharmacokinetic markers for guanxin danshen drop pills in rats by combination of pharmacokinetics, systems pharmacology, and pharmacodynamic assays. Front Pharmacol 2018;9:1493. https://doi.org/10.3389/fphar.2018.01493
  108. Shi PY, Xie YJ, Xie RF, Lin Z, Yao H, Wu S. An integrated pharmacokinetic study of an acanthopanax senticosus extract preparation by combination of virtual screening, systems pharmacology, and multi-component pharmacokinetics in rats. Front Pharmacol 2020;11:1295. https://doi.org/10.3389/fphar.2020.01295
  109. Wang PP, Huang H, Chen B, Su Y, Shi PY, Yao H. Systems pharmacology dissection of mechanisms of dengzhan xixin injection against cardiovascular diseases. Chem Pharm Bull 2020;68:837-47. https://doi.org/10.1248/cpb.c20-00122
  110. Xie RF, Liu ZZ, Lin Z, Shi PY, Chen B, Li SG, Li GW, Huang LY, Lin XH, Yao H. Potential mechanism of action of Ixeris sonchifolia extract injection against cardiovascular diseases revealed by combination of HPLC-Q-TOF-MS, virtual screening and systems pharmacology approach. RSC Adv 2020;10:38497-504. https://doi.org/10.1039/d0ra07038f
  111. Li CY, Yang P, Jiang YL, Lin Z, Pu YW, Xie LQ, et al. Ginsenoside Rb1 attenuates cardiomyocyte apoptosis induced by myocardial ischemia reperfusion injury through mTOR signal pathway. Biomed Pharmacother 2020;125:109913. https://doi.org/10.1016/j.biopha.2020.109913
  112. Qiao L, Zhang X, Liu M, Liu X, Dong M, Cheng J, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by improving autophagy and lipid metabolism in macrophage foam cells. Front Pharmacol 2017;8:727. https://doi.org/10.3389/fphar.2017.00727