DOI QR코드

DOI QR Code

Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: pharmacological and therapeutic roles

  • Hyun, Sun Hee (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Bhilare, Kiran D. (College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University) ;
  • In, Gyo (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Park, Chae-Kyu (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Kim, Jong-Hoon (College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University)
  • Received : 2021.07.07
  • Accepted : 2021.07.21
  • Published : 2022.01.01

Abstract

Traditionally, Asian ginseng or Korean ginseng, Panax ginseng has long been used in Korea and China to treat various diseases. The main active components of Panax ginseng is ginsenoside, which is known to have various pharmacological treatment effects such as antioxidant, vascular easing, anti-allergic, anti-inflammatory, anti-diabetes, and anticancer. Most reactive oxygen species (ROS) cause chronic diseases such as myocardial symptoms and cause fatal oxidative damage to cell membrane lipids and proteins. Therefore, many studies that inhibit the production of oxidative stress have been conducted in various fields of physiology, pathophysiology, medicine and health, and disease. Recently, ginseng or ginsenosides have been known to act as antioxidants in vitro and in vivo results, which have a beneficial effect on preventing cardiovascular disease. The current review aims to provide mechanisms and inform precious information on the effects of ginseng and ginsenosides on the prevention of oxidative stress and cardiovascular disease in animals and clinical trials.

Keywords

References

  1. Bridges AB, Scott NA, Parry GJ, Belch JJ. Age, sex, cigarette smoking and indices of free radical activity in healthy humans. Eur J Med 1993;2(4):205-8.
  2. Sanderson KJ, van Rij AM, Wade CR, Sutherland WH. Lipid peroxidation of circulating low density lipoproteins with age, smoking and in peripheral vascular disease. Atherosclerosis 1995;118(1):45-51. https://doi.org/10.1016/0021-9150(95)05591-J
  3. Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 2002;346(25):1954-62. https://doi.org/10.1056/NEJMoa013591
  4. Ghiadoni L, Magagna A, Versari D, Kardasz I, Huang Y, Taddei S, Salvettiet A. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 2003;41(6):1281-6. https://doi.org/10.1161/01.hyp.0000070956.57418.22
  5. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997;272(34):20963-6. https://doi.org/10.1074/jbc.272.34.20963
  6. Witztum JL, Berliner JA. Oxidized phospholipids and isoprostanes in atherosclerosis. Curr Opin Lipidol 1998;9(5):441-8. https://doi.org/10.1097/00041433-199810000-00008
  7. Chisolm GM, Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med 2000;28(15):1815-26. https://doi.org/10.1016/S0891-5849(00)00344-0
  8. Walter MF, Jacob RF, Jeffers B, Ghadanfar MM, Preston GM, Buch J, Mason RP. Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease: a longitudinal analysis of the PREVENT study. J Am Coll Cardiol 2004;44(10):1996-2002. https://doi.org/10.1016/j.jacc.2004.08.029
  9. Zahavi J, Betteridge JD, Jones NA, Galton DJ, Kakkar VV. Enhanced in vivo platelet release reaction and malondialdehyde formation in patients with hyperlipidemia. Am J Med 1981;70(1):59-64. https://doi.org/10.1016/0002-9343(81)90412-5
  10. Collier A, Rumley A, Rumley AG, Paterson JR, Leach JP, Lowe GD, Small M. Free radical activity and hemostatic factors in NIDDM patients with and without microalbuminuria. Diabetes 1992;41(8):909-13. https://doi.org/10.2337/diabetes.41.8.909
  11. Wang D, Kreutzer DA, Essigmann JM. Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat Res 1998;400(1-2):99-115. https://doi.org/10.1016/S0027-5107(98)00066-9
  12. Taysi S, Polat F, Gul M, Sari RA, Bakan E. Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int 2002;21(5):200-4. https://doi.org/10.1007/s00296-001-0163-x
  13. Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem 1987;262(12):5488-91. https://doi.org/10.1016/S0021-9258(18)45598-6
  14. Beal MF. Oxidatively modified proteins in aging and disease. Free Radic Biol Med 2002;32(9):797-803. https://doi.org/10.1016/S0891-5849(02)00780-3
  15. Mutlu-Turkoglu U, Ilhan E, Oztezcan S, Kuru A, Aykac-Toker G, Uysal M. Age-related increases in plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in elderly subjects. Clin Biochem 2003;36(5):397-400. https://doi.org/10.1016/S0009-9120(03)00035-3
  16. Toth PP. Making a case for quantitative assessment of cardiovascular risk. J Clin Lipidol 2007;1(4):234-41. https://doi.org/10.1016/j.jacl.2007.07.002
  17. Davies MJ, Gordon JL, Gearing AJ, Pigott R, Woolf N, Katz D, Kyriakopoulos A. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and Eselectin in human atherosclerosis. J Pathol 1993;171(3):223-9. https://doi.org/10.1002/path.1711710311
  18. Kim J-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42(3):264-9. https://doi.org/10.1016/j.jgr.2017.10.004
  19. Siti HN, Kamisaha Y, Kamsiaha JJ. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascular Pharmacology 2015;71:40-56. https://doi.org/10.1016/j.vph.2015.03.005
  20. Qi LW, Wang CZ, Yuan CS. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep 2011;28(3):467-95. https://doi.org/10.1039/c0np00057d
  21. Sengupta S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung HW, Wong RN, Sasisekharan R, Fan TP. Modulating angiogenesis: the yin and the yang in ginseng. Circulation 2004;110(10):1219-25. https://doi.org/10.1161/01.CIR.0000140676.88412.CF
  22. Nah SY, Kim DH, Rhim H. Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev 2007;13(4):381-404. https://doi.org/10.1111/j.1527-3458.2007.00023.x
  23. Wang Y, Choi HK, Brinckmann JA, Jiang X, Huang L. Chemical analysis of Panax quinquefolius (North American ginseng): a review. J Chromatogr A 2015;1426:1-15. https://doi.org/10.1016/j.chroma.2015.11.012
  24. Zhang YC, Li G, Jiang C, Yang B, Yang HJ, Xu HY, Huang LQ. Tissue-specific distribution of ginsenosides in different aged ginseng and antioxidant activity of ginseng leaf. Molecules 2014;19(11):17381-99. https://doi.org/10.3390/molecules191117381
  25. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J. Ginseng Res 2015;39(4):287-98. https://doi.org/10.1016/j.jgr.2014.12.005
  26. Jiao L, Zhang X, Wang M, Li B, Liu Z, Liu S. Chemical and antihyperglycemic activity changes of ginseng pectin induced by heat processing. Carbohydr Polym 2014;114:567-73. https://doi.org/10.1016/j.carbpol.2014.08.018
  27. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39(4):384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  28. Chong-Zhi WA, Anderson S, Wei DU, Tong-Chuan HE, Chun-Su YU. Red ginseng and cancer treatment. Chin J Nat Med 2016;14(1):7-16. https://doi.org/10.3724/SP.J.1009.2016.00007
  29. Kim GN, Lee JS, Song JH, Oh CH, Kwon YI, Jang HD. Heat processing decreases Amadori products and increases total phenolic content and antioxidant activity of Korean Red ginseng. J Med Food 2010;13(6):1478-84. https://doi.org/10.1089/jmf.2010.1076
  30. Matsuura Y, Zheng Y, Takaku T, Kameda K, Okuda H. Isolation and physiological activities of new amino acid derivatives from Korean Red ginseng. Korean J Ginseng Sci 1994;18(3):204-11.
  31. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997;82(2):291-5. https://doi.org/10.1113/expphysiol.1997.sp004024
  32. Nickenig G, Harrison DG. The AT-1-type angiotensin receptor in oxidative stress and hypertension part I: oxidative stress and atherogenesis. Circulation 2002;105(3):393-6. https://doi.org/10.1161/hc0302.102618
  33. Ray R, Shah AM. NADPH oxidase and endothelial cell function. Clin Sci 2005;109(3):217-26. https://doi.org/10.1042/CS20050067
  34. Sies H. Total antioxidant capacity: appraisal of a concept. J Nutr 2007;137(6):1493-5. https://doi.org/10.1093/jn/137.6.1493
  35. Wang Y, Chun OK, Song WO. Plasma and dietary antioxidant status as cardiovascular disease risk factors: a review of human studies. Nutrients 2013;5(8):2969-3004. https://doi.org/10.3390/nu5082969
  36. Sawyer DB, Colucci WS. Nitric oxide in the failing myocardium. Cardiol Clin 1998;16(4):657-64. https://doi.org/10.1016/S0733-8651(05)70042-4
  37. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 1999;84(1):21-33. https://doi.org/10.1161/01.RES.84.1.21
  38. von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999;99(22):2934-41. https://doi.org/10.1161/01.CIR.99.22.2934
  39. Griendling KK, Ushio-Fukai M. Redox control of vascular smooth muscle proliferation. J Lab Clin Med 1998;132(1):9-15. https://doi.org/10.1016/S0022-2143(98)90019-1
  40. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 1998;273(24):15022-9. https://doi.org/10.1074/jbc.273.24.15022
  41. Fukai T, Siegfried MR, Ushio-Fukai M, Griendling KK, Harrison DG. Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ Res 1999;85(1):23-8. https://doi.org/10.1161/01.RES.85.1.23
  42. Kanani PM, Sinkey CA, Browning RL, Allaman M, Knapp HR, Haynes WG. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation 1999;100(11):1161-8. https://doi.org/10.1161/01.CIR.100.11.1161
  43. B Britten M, Zeiher A M, Sch achinger V. Clinical importance of coronary endothelial vasodilator dysfunction and therapeutic options. J Intern Med 1999;245(4):315-27. https://doi.org/10.1046/j.1365-2796.1999.00449.x
  44. Jimi S, Saku K, Kusaba H, Itabe H, Koga N, Takebayashi S. Deposition of oxidized low-density lipoprotein and collagenosis occur coincidentally in human coronary stenosis: an immunohistochemical study of atherectomy. Coron Artery Dis 1998;9(9):551-7. https://doi.org/10.1097/00019501-199809090-00001
  45. Ferrari R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O. Oxidative stress during myocardial ischaemia and heart failure. Eur Heart J 1998;19:B2-11.
  46. Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, Kajstura J. Apoptosis and myocardial infarction. Basic Res Cardiol 1998;93(3):8-12.
  47. Zhang JT, Qu ZW, Liu Y, Deng HL. Preliminary study on antiamnestic mechanism of ginsenoside Rg1 and Rb1. Chin Med J (Engl) 1990;103(11):932-8.
  48. Deng HL, Zhang JT. Anti-lipid peroxilative effect of ginsenoside Rb1 and Rg1. Chin Med J (Engl) 1991;104(5):395-8.
  49. Kim JS, Nam K, Shim KH, Kim KW, Im KS, Chung HY. Antioxidative mechanism of total saponin of red ginseng. Korean J Life Sci 1996;6(1):48-55.
  50. Jung J, Jang HJ, Eom SJ, Choi NS, Lee NK, Paik HD. Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: ginsenoside conversion and antioxidant effects. J Ginseng Res 2019;43(1):20-6. https://doi.org/10.1016/j.jgr.2017.07.004
  51. Tsai CC, Chan P, Chen LJ, Chang CK, Liu Z, Lin JW. Merit of ginseng in the treatment of heart failure in type 1-like diabetic rats. BioMed Research International 2014. Article ID 484161.
  52. Irfan M, Kwak YS, Han CK, Hyun SH, Rhee MH. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions. J Ginseng Res 2020;44(4):538-43. https://doi.org/10.1016/j.jgr.2020.03.001
  53. Komishon AM, Shishtar E, Ha V, Sievenpiper JL, de Souza RJ, Jovanovski E, Ho HV, Duvnjak LS, Vuksan V. The effect of ginseng (genus Panax) on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. J Hum Hypertens 2016;30(10):619-26. https://doi.org/10.1038/jhh.2016.18
  54. Kwon YJ, Jang SN, Liu KH, Jung DH. Effect of Korean red ginseng on cholesterol metabolites in postmenopausal women with hypercholesterolemia: a pilot randomized controlled trial. Nutrients 2020;12(11):3423. https://doi.org/10.3390/nu12113423
  55. Li J, Ichikawa T, Jin Y, Hofseth LJ, Nagarkatti P, Nagarkatti M, Windust A, Cui T. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes. J Ethnopharmacol 2010;130(2):222-30. https://doi.org/10.1016/j.jep.2010.03.040
  56. Lim KH, Ko D, Kim JH. Cardioprotective potential of Korean Red Ginseng extract on isoproterenol-induced cardiac injury in rats. J Ginseng Res 2013;37(3):273-82. https://doi.org/10.5142/jgr.2013.37.273
  57. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 2005;41(5):861-8. https://doi.org/10.1016/j.jvs.2005.01.054
  58. Xie JT, Shao ZH, Hoek TL, Chang WT, Li J, Mehendale S, Wang CZ, Hsu CW, Becker LB, Yin JJ, et al. Antioxidant effects of ginsenoside Re in cardiomyocytes. Eur J Pharmacol 2006;532(3):201-7. https://doi.org/10.1016/j.ejphar.2006.01.001
  59. Kim YM, Namkoong S, Yun YG, Hong HD, Lee YC, Ha KS, Lee H, Kwon HJ, Kwon YG, Kim YM. Water extract of Korean red ginseng stimulates angiogenesis by activating the Pi3k/Akt-dependent Erk1/2 and eNOS pathways in human umbilical vein endothelial cells. Biol Pharm Bull 2007;30(9):1674-9. https://doi.org/10.1248/bpb.30.1674
  60. Wan JB, Lee SM, Wang JD, Wang N, He CW, Wang YT, Kang JX. Panax notoginseng reduces atherosclerotic lesions in ApoE-deficient mice and inhibits TNF-alpha-induced endothelial adhesion molecule expression and monocyte adhesion. J Agric Food Chem 2009;57(15):6692-7. https://doi.org/10.1021/jf900529w
  61. Hien TT, Kim ND, Pokharel YR, Oh SJ, Lee MY, Kang KW. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent Pi3-kinase and Amp-activated protein kinase. Toxicol Appl Pharmacol 2010;246(3):171-83. https://doi.org/10.1016/j.taap.2010.05.008
  62. Leung KW, Cheng YK, Mak NK, Chan KK, Fan TP, Wong RN. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett 2006;580(13):3211-6. https://doi.org/10.1016/j.febslet.2006.04.080
  63. Lee JY, Lim KM, Kim SY, Bae ON, Noh JY, Chung SM, Kim K, Shin YS, Lee MY, Chung JH. Vascular smooth muscle dysfunction and remodeling induced by ginsenoside Rg3, a bioactive component of ginseng. Toxicol Sci 2010;117(2):505-14. https://doi.org/10.1093/toxsci/kfq201
  64. Wang T, Yu XF, Qu SC, Xu HL, Sui DY. Ginsenoside Rb3 inhibits angiotensin II induced vascular smooth muscle cells proliferation. Basic Clin Pharmacol Toxicol 2010;107(2):685-9. https://doi.org/10.1111/j.1742-7843.2010.00560.x
  65. Rhee MY, Kim YS, Bae JH, Nah DY, Kim YK, Lee MM, Kim HY. Effect of Korean red ginseng on arterial stiffness in subjects with hypertension. J Altern Complement Med 2011;17(1):45-9. https://doi.org/10.1089/acm.2010.0065
  66. Shin W, Yoon J, Oh GT, Ryoo S. Korean red ginseng inhibits arginase and contributes to endothelium-dependent vasorelaxation through endothelial nitric oxide synthase coupling. J Ginseng Res 2013;37(1):64-73. https://doi.org/10.5142/jgr.2013.37.64
  67. Jeon BH, Kim CS, Park KS, Lee JW, Park JB, Kim KJ, Kim SH, Chang SJ, Nam KY. Effect of Korea red ginseng on the blood pressure in conscious hypertensive rats. Gen Pharmacol 2000;35(3):135-41. https://doi.org/10.1016/S0306-3623(01)00096-9
  68. Qin N, Gong QH, Wei LW, Wu Q, Huang XN. Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats. Biol Pharm Bull 2008;31(8):1530-5. https://doi.org/10.1248/bpb.31.1530
  69. Deng J, Wang YW, Chen WM, Wu Q, Huang XN. Role of nitric oxide in ginsenoside Rg(1)-induced protection against left ventricular hypertrophy produced by abdominal aorta coarctation in rats. Biol Pharm Bull 2010;33(4):631-5. https://doi.org/10.1248/bpb.33.631
  70. Wu Y, Xia ZY, Dou J, Zhang L, Xu JJ, Zhao B, Lei S, Liu HM. Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats. Mol Biol Rep 2011;38(7):4327-35. https://doi.org/10.1007/s11033-010-0558-4
  71. Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, et al. Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem 2009;108(1):117-24. https://doi.org/10.1002/jcb.22233
  72. Kim TH, Lee SM. The effects of ginseng total saponin, panaxadiol and panaxatriol on ischemia/reperfusion injury in isolated rat heart. Food Chem Toxicol 2010;48(6):1516-20. https://doi.org/10.1016/j.fct.2010.03.018
  73. Tsutsumi YM, Tsutsumi R, Mawatari K, Nakaya Y, Kinoshita M, Tanaka K, Oshita S. Compound K. a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/Pi3k pathway. Life Sci 2011;88(15-16):725-9. https://doi.org/10.1016/j.lfs.2011.02.011
  74. Guo J, Gan XT, Haist JV, Rajapurohitam V, Zeidan A, Faruq NS, Karmazyn M. Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation. Circ Heart Fail 2011;4(1):79-88. https://doi.org/10.1161/CIRCHEARTFAILURE.110.957969
  75. Jin YR, Yu JY, Lee JJ, You SH, Chung JH, Noh JY, Im JH, Han XH, Kim TJ, Shin KS, et al. Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin Pharmacol Toxicol 2007;100(3):170-5. https://doi.org/10.1111/j.1742-7843.2006.00033.x
  76. Lee YH, Lee BK, Choi YJ, Yoon IK, Chang BC, Gwak HS. Interaction between warfarin and Korean red ginseng in patients with cardiac valve replacement. Int J Cardiol 2010;145(2):275-6. https://doi.org/10.1016/j.ijcard.2009.09.553
  77. Ahn CM, Hong SJ, Choi SC, Park JH, Kim JS, Lim DS. Red ginseng extract improves coronary flow reserve and increases absolute numbers of various circulating angiogenic cells in patients with first ST-segment elevation acute myocardial infarction. Phytother Res 2011;25(2):239-49. https://doi.org/10.1002/ptr.3250
  78. Toh HT. Improved isolated heart contractility and mitochondrial oxidation after chronic treatment with Panax ginseng in rats. Am J Chin Med 1994;22:275-84. https://doi.org/10.1142/S0192415X94000334
  79. Yi XQ, Li T, Wang JR, Wong VK, Luo P, Wong IY, Jiang ZH, Liu L, Zhou H. Total ginsenosides increase coronary perfusion flow in isolated rat hearts through activation of PI3K/Akt-eNOS signaling. Phytomedicine 2010;17(13):1006-15. https://doi.org/10.1016/j.phymed.2010.06.012
  80. Wang X, Chai H, Yao Q, Chen C. Molecular mechanisms of HIV protease inhibitor-induced endothelial dysfunction. J Acquir Immune Defic Syndr 2007;44(5):493-9. https://doi.org/10.1097/QAI.0b013e3180322542