DOI QR코드

DOI QR Code

Development of Numerical Computation Techniques for the Free-Surface of U-Tube Type Anti-roll Tank

U-튜브형 횡동요 감쇄 탱크의 자유수면 해석기법 개발에 관한 연구

  • Sang-Eui Lee (Department of Mechatronics Convergence Engineering, Changwon National University)
  • 이상의 (창원대학교 메카융합공학과)
  • Received : 2022.11.01
  • Accepted : 2022.12.28
  • Published : 2022.12.31

Abstract

Marine accidents due to a loss of stability, have been gradually increasing over the last decade. Measures must be taken on the roll reduction of a ship. Amongst the measures, building an anti-roll tank in a ship is recognized as the most simple and effective way to reduce the roll motion. Therefore, this study aims to develop a computational model for a U-tube type anti-roll tank and to validate it by experiment. In particular, to validate the developed computational model, the height of the free surface in the tank was measured in the experiment. To develop a computational model, the mesh dependency test was carried out. Further, the effects of a turbulence model, time step size, and the number of iterations on the numerical solution were analyzed. In summary, a U-tube type anti-roll tank simulation had to be performed accurately with conditions of a realizable k-𝜖 turbulence model, 10-2s time step size, and 15 iterations. In validation, the two cases of measured data from the experiment were compared with the numerical results. In the present study, STAR-CCM+ (ver. 17.02), a RANS-based commercial solver was used.

지난 10년간 선박의 횡동요 복원력 상실에 의한 해양사고가 지속해서 증가하고 있어, 횡동요 운동을 효과적으로 줄일 수 있는 장치가 필요한 실정이다. 횡동요 감쇄 탱크는 단순한 설치만으로 횡동요 저감을 가져오는 대표적인 수동형 제어장치로 그 장점이 널리 알려져 있다. 따라서 본 연구에서는 U-튜브형 횡동요 감쇄 탱크의 수치해석 기법을 개발하고자 한다. 특히, 해석기법의 검증을 위해 자유수면 높이를 실험을 통해 계측하였다. 수치해석기법은 메쉬 의존성, 난류모델 (k-𝜖, k-𝜔, Reynolds Stress Model), 시간 간격 크기 및 반복횟수 등의 영향을 비교하여 개발하였다. 최종적으로 개발된 해석기법은 Realizable k-𝜖이 난류 모델에 10-2s 수준의 시간 간격 크기와 15회의 반복횟수를 적용하였다. 2가지의 U-튜브형 감쇄 탱크의 조건에서 계측된 자유수면 높이를 이용하여 개발된 해석기법을 검증하였다. 본 연구의 수치해석은 RANS 기반 상용 해석 Solver인 STAR-CCM+ (ver. 17.02)을 이용하였다.

Keywords

Acknowledgement

이 성과는 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF- 2020R1G1A1010991).

References

  1. Bass, D. W.(1998), Roll Stabilization for Small Fishing Vessels using Paravanes and Anti-roll tanks. Marine Technology, Vol. 35(2), pp. 74-84.
  2. Bernal-Colio, V. R., J. Gomez-Goni, and J. L. Cercos-Pita (2021), CFD Computation of the Hydrodynamic Torque due to Free-surface Antiroll Tanks with 3D Dynamics, Ships and Offshore Structures, Vol. 16(8).
  3. Bhattacharyya, R.(1978), Dynamics of Marine Vehicles, John Wiley & Sons, Inc.
  4. Bosch, J. J. V. D. and J. H. Vugts(1966), On Roll Damping by Free Surface Tanks, Transactions of Royal Institution of Naval Architects, Vol. 108, 345.
  5. de Moura, C. A. and C. S. Kubrusly(2013), The Courant-Friedrichs-Lewy Condition, Birkhauser.
  6. Field, S. B. and J. P. Martin(1976), Comparative Effects of Utube and Free Surface Type Passive Roll Stabilization Systems, Transactions of the Royal Institution of Naval Architects, Vol. 118, pp. 73-92.
  7. Frahm, H.(1911), Results of Trials of the Anti-rolling Tanks at Aea, Transactions of the Institution of Naval Architects, Vol. 53, pp. 183-201.
  8. Hashimoto, H.(2010), Numerical Simulation Method for a Coupling Motion of Ship and Tank Fluid, Proceedings of the 15th International Workshop on Water Waves and Floating Bodies, Harbin, China.
  9. Hirt, C. W. and B. D. Nichols(1981), Volume of Fluid Method for the Dynamics of Free Boundaries, Journal of Computational Physics, Vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  10. Ikeda, Y. and T. Yoshiyama(1991), A Study on Flume-type Anti-rolling Tank, Journal of the Kansai Society of Naval Architects, Vol. 216, 111.
  11. Kerkvliet, M., G. Vaz, N. Carette, and M. Gunsing(2014), Analysis of U-type Anti-roll Tank using URANs. Sensitivity and Validation, Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, June 8-13, San Francisco, California, USA.
  12. Kim, K. S. and B. H. Lee(2018), Simulation of Vessel Motion Control by Anti-Rolling Tank, Journal of Ocean Engineering and Technology, Vol. 32(6), pp. 440-446.
  13. KMST(2019), Korean Maritime Safety Tribunal, Statistics: Marine Accidents according to Vessel Type.
  14. Kleefsman, K. M. T.(2000), Numerical Simulation of Ship Motion Stabilization by an Activated U-tube Anti-roll Tank, Master's Thesis, University of Groningen, Department of Mathematics.
  15. Lew, J. M., B. J. Choi, and H. C. Kim(2003), On the Passive Type Anti-rolling Tank and its Activations by Air Blower, Ship & Ocean Technology, Vol. 7(1), pp. 19-23.
  16. Souto-Iglesias, A., L. Perez-Rojas, and R. Zamora-Rodriguez (2004) Simulation of Anti-roll Tanks and Sloshing Type Problems with Smoothed Particle Hydrodynamics. Ocean Eng. 31(8-9), pp. 1169-1192.
  17. STAR-CCM+(2022), User's Guide (Ver. 17.02), SIEMENS, Munich.
  18. Stigter, C.(1966), The Performance of U-tanks as a Passive Anti-rolling Device, TNO Report No. 81S.
  19. van Daalen, E. F. G., J. Gerrits, G. E. Loots, and A. E. P. Veldman(2000), Free Surface Anti-roll Tank Simulations with a Volume Of Fluid based Navier-Stokes Solver, Proceedings of the 15th International Workshop on Water Waves and Floating Bodies, Caesarea, Israel.
  20. Vasta, J., A. J. Giddings, A. Taplinand and J. J. Stilwell (1961), Roll Stabilization by means of Passive Tanks, Transactions of the Society of Naval Architects and Marine Engineers, Vol. 69, pp. 411-460.
  21. Webster, W. C., J. F. Dalzell, and R. A. Barr(1988), Prediction and Measurement of the Performance of Free-flooding Ship Anti-rolling Tanks, Transactions of Society of Naval Architects and Marine Engineers, Vol. 96.
  22. Yamaguchi, S. and A. Shinkai(1995), An Advanced Adaptive Control System for Activated Anti-roll Tank, International Journal of Offshore and Polar Engineering, Vol. 5(1), pp. 17-22.
  23. Zhong, Z., J. M. Falzarano, and R. M. Fithen(1998), A Numerical Study of U-tube Passive Anti-roll Tanks, Proceedings of the International Symposium of Offshore and Polar Engineering (ISOPE), Vol. 3, pp. 504-512.