DOI QR코드

DOI QR Code

A Study on the Optimization of Main Dimensions of a Ship by Design Search Techniques based on the AI

AI 기반 설계 탐색 기법을 통한 선박의 주요 치수 최적화

  • Dong-Woo Park (School of Naval Architecture & Ocean Engineering, Tongmyong University) ;
  • Inseob Kim (Smart Safety Research Department, Korea Maritime Transportation Safety Authority)
  • 박동우 (동명대학교 조선해양공학과) ;
  • 김인섭 (한국해양교통안전공단 스마트안전연구실)
  • Received : 2022.10.24
  • Accepted : 2022.12.28
  • Published : 2022.12.31

Abstract

In the present study, the optimization of the main particulars of a ship using AI-based design search techniques was investigated. For the design search techniques, the SHERPA algorithm by HEEDS was applied, and CFD analysis using STAR-CCM+ was applied for the calculation of resistance performance. Main particulars were automatically transformed by modifying the main particulars of the ship at the stage of preprocessing using JAVA script and Python. Small catamaran was chosen for the present study, and the main dimensions of the length, breadth, draft of demi-hull, and distance between demi-hulls were considered as design variables. Total resistance was considered as an objective function, and the range of displaced volume considering the arrangement of the outfitting system was chosen as the constraint. As a result, the changes in the individual design variables were within ±5%, and the total resistance of the optimized hull form was decreased by 11% compared with that of the existing hull form. Throughout the present study, the resistance performance of small catamaran could be improved by the optimization of the main dimensions without direct modification of the hull shape. In addition, the application of optimization using design search techniques is expected for the improvement in the resistance performance of a ship.

본 논문에서는 AI 기반 설계 탐색 기법을 활용하여 선박의 주요 치수 최적화를 수행하였다. 설계 탐색 기법은 최적화 프로그램 HEEDS의 SHERPA 알고리즘을 사용하였다. 유동 해석은 상용 CFD 코드인 STAR-CCM+를 사용하였고, 주요 치수 변환은 전처리 과정에서 JAVA Script와 Python을 사용하여 선박의 치수가 자동으로 변환되도록 설정하였다. 대상 선박은 소형 쌍동선형으로 주요 치수 최적화는 한쪽 선형의 길이, 폭, 흘수 그리고 단동선형 간의 간격에 대하여 수행되었다. 최적화 알고리즘에 사용된 목적함수는 총저항이며, 내부 의장 시스템의 크기 등을 고려한 배수 체적의 범위를 제한조건으로 선정하였다. 그 결과 최적 선형의 주요 치수는 기존 선형 대비 ±5% 내에서 변화가 있었고 총저항은 약 11% 개선된 결과를 보였다. 본 연구를 통해 선박의 형상을 직접 변경하지 않더라도 주요 치수 최적화를 통해 선박의 저항 성능이 향상됨을 확인하였고, 다양한 선박의 주요 치수 최적화를 통한 성능 향상에 활용이 될 것으로 기대한다.

Keywords

Acknowledgement

이 연구는 한국산업기술진흥원의 부산 암모니아 친환경에너지 특구 사업 중 암모니아 기반 연료전지 하이브리드 친환경 선박 실증(P0020619) 과제 및 산업통상자원부와 한국산업기술진흥원의 지역혁신클러스터R&D 사업(P0015330)의 지원을 받아 수행되었습니다.

References

  1. CD-adapco(2018), STAR-CCM+ User Guide, Ver. 13.02.
  2. Choi, H. J. and D. W. Park(2013), Wave-resistance Performance Analysis of the Twin Hull for a Type of the Asymmetric and Symmetric Mono Hull. Journal of the Korean Society of Marine Environment & Safety, 19(1), pp. 78-84. https://doi.org/10.7837/kosomes.2013.19.1.078
  3. Deng, G. B., R. Duvigneau, P. Queutey, and M. Visonneau (2004), Assessment of Turbulence Model for Ship Flow at Full Scale, 6th World Congress on Computational Mechanics (WCCM), Beijing, September 2004.
  4. Ferziger, J. H. and M. Peric(2002), Computational Methods for Fluid Dynamics, 3rd Edition, Springer, Germany, pp. 292-294.
  5. Kim, H. S. and U. C. Jeong(2010), A study on the flow characteristics between two hull forms of catamaran Leisure boat. Journal of Korean Society of Mechanical Technology, 12(1), pp. 1-6.
  6. Kim, M. and D. W. Park(2015), A study on the green ship design for ultra large container ship. Journal of the Korean Society of Marine Environment & Safety, 21(5), pp. 558-570. https://doi.org/10.7837/kosomes.2015.21.5.558
  7. Lee, Y. K., I. H. Park, J. H. Shin, S. Kim, K. Y. Lee, and Y. S. Choi(2015), Mixed-flow pump impeller-diffuser optimization method by using CFX and HEEDS. Transactions of the Korean Society of Mechanical Engineers B, 39(10), pp. 831-842.
  8. Park, C. W. and U. C. Jeong(2001), A study on the resistance performance of twin hull forms-the effect of distance between two hulls. Journal of Korean Society of Mechanical Technology, 3(1), pp. 163-168.
  9. Rahkola, P.(2014), Parameter optimisation using Heeds MDO and DAKOTA.
  10. Spalart, P. R. and C. L. Rumsey(2007), Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations, American Institute of Aeronautics and Astronautics (AIAA) Journal, Vol. 45, No. 10, pp. 2544-2553. https://doi.org/10.2514/1.29373