DOI QR코드

DOI QR Code

Design and Structural Safety Evaluation of 1MW Class Tidal Current Turbine Blade applied Composite Materials

복합재료를 적용한 1MW급 조류 발전 터빈 블레이드의 설계와 구조 안전성 평가

  • Haechang Jeong (Department of Marine Engineering, Mokpo National Maritime University) ;
  • Min-seon Choi (Division of Marine Engineering, Mokpo National Maritime University) ;
  • Changjo Yang (Division of Marine Engineering, Mokpo National Maritime University)
  • 정해창 (목포해양대학교 대학원) ;
  • 최민선 (목포해양대 기관시스템공학부 ) ;
  • 양창조 (목포해양대 기관시스템공학부 )
  • Received : 2022.08.31
  • Accepted : 2022.12.28
  • Published : 2022.12.31

Abstract

The rotor blade is an important component of a tidal stream turbine and is affected by a large thrust force and load due to the high density of seawater. Therefore, the performance must be secured through the geometrical and structural design of the blade and the blade structural safety to which the composite material is applied. In this study, a 1 MW class large turbine blade was designed using the blade element momentum (BEM) theory. GFRP is a fiber-reinforced plastic used for turbine blade materials. A sandwich structure was applied with CFRP to lay-up the blade cross-section. In addition, to evaluate structural safety according to flow variations, static load analysis within the linear elasticity range was performed using the fluid-structure interactive (FSI) method. Structural safety was evaluated by analyzing tip deflection, strain, and failure index of the blade due to bending moment. As a result, Model-B was able to reduce blade tip deflection and weight. In addition, safety could be secured by indicating that the failure index, inverse reserve factor (IRF), was 1 or less in all load ranges excluding 3.0*Vr of Model-A. In the future, structural safety will be evaluated by applying various failure theories and redesigning the laminated pattern as well as the change of blade material.

로터 블레이드는 조류발전 터빈의 매우 중요한 구성 요소로서, 해수의 높은 밀도로 인해 큰 추력(Trust force)와 하중(Load)의 영향을 받는다. 따라서 블레이드의 형상 및 구조 설계를 통한 성능과 복합소재를 적용한 블레이드의 구조적 안전성을 반드시 확보해야 한다. 본 연구에서는 블레이드 설계 기법인 BEM(Blade Element Momentum) 이론을 이용해 1MW급 대형 터빈 블레이드를 설계하였으며, 터빈 블레이드의 재료는 강화섬유 중의 하나인 GFRP(Glass Fiber Reinforced Plastics)를 기본으로 CFRP(Carbon Fiber Reinforced Plastics)를 샌드위치 구조에 적용해 블레이드 단면을 적층(Lay-up)하였다. 또한 유동의 변화에 따른 구조적 안전성을 평가하기 위해 유체-구조 연성해석(Fluid-Structure Interactive Analysis, FSI) 기법을 이용한 선형적 탄성범위 안의 정적 하중해석을 수행하였으며, 블레이드의 팁 변형량, 변형률, 파손지수를 분석해 구조적 안전성을 평가하였다. 결과적으로, CFRP가 적용된 Model-B의 경우 팁 변형량과 블레이드의 중량을 감소시켰으며, 파손지수 IRF(Inverse Reserce Factor)가 Model-A의 3.0*Vr를 제외한 모든 하중 영역에서 1.0 이하를 지시해 안전성을 확보할 수 있었다. 향후 블레이드의 재료변경과 적층 패턴의 재설계뿐 아니라 다양한 파손이론을 적용해 구조건전성을 평가할 예정이다.

Keywords

Acknowledgement

본 연구는 해양수산부(MOF)의 '해양수산산업 기자재 표준화 기술 개발(과제번호:20210044)'과 한국해양과학기술진흥원(KIMST) 해양청정에너지기술개발사업 일환의 '조류발전 실해역 시험장 구축(과제번호:20170333)' 과제의 지원으로 이루어졌으며, 관계자 여러분께 깊은 감사를 드립니다.

References

  1. Alberto, B.(2020), State-of-the-art of MW-level capacity oceanic current turbines, The journal of Nonlinear Engineering, Vol. 9, No. 1, pp. 361-369.  https://doi.org/10.1515/nleng-2020-0022
  2. Bir, G. S., M. J. Lawson, and Y. Li(2011), Structural of a Horizontal-Axis Tidal Current Turbine Composite Blade, National Renewable Energy Laboratory (NREL), NREL/CP-5000-50658. 
  3. Bradaigh, C. M. O., D. M. Grogan, S. B. Leen, and C. R. Kennedy(2013), Design of Composite Tidal Turbine Blades, Renewable Energy Vol. 57, pp. 151-162.  https://doi.org/10.1016/j.renene.2013.01.021
  4. Calvario, M., L. S. Sutherland, and C. G. Soares(2017), A review of the applications composite materials in wave and tidal energy devices, Proceedings of the 17th International Congress of the International Maritime Association of the Mediterranean, pp. 1111-1117. 
  5. Composite Materials Handbook(2002), Department of Defense Handbook US, MIL-HDBK-17-3F Vol. 3. 
  6. Forcier, L. C. and S. Joncas(2011), Development of a structural optimization strategy for the design of next generation large thermoplastic wind turbine blades, Structural and Multidisciplinary Optimization, Vol. 45, pp. 889-906.  https://doi.org/10.1007/s00158-011-0722-z
  7. Gonabadi, H., A. Olia, A. Yadav, and S. Bull(2021), Structural Performance of Composite Tidal Turbine blades, Composite Structures 278 (2021) 114679. 
  8. Goundar, J. N. and M. R. Ahmed(2013), Design of a horizontal axis tidal current turbine, Journal of Applied Energy, Vol. 111, pp. 161-174.  https://doi.org/10.1016/j.apenergy.2013.04.064
  9. Harrison, G. P. and A. R. Wallace(2005), Climate sensitivity of marine energy, Renewable Energy, Vol. 30, No. 12, pp. 1801-1817.  https://doi.org/10.1016/j.renene.2004.12.006
  10. IHS Emerging Energy Research(2010). 
  11. Jahromi, M. J., A. I. Maswood, and K. J. Tseng(2011), Long term prediction of tidal currents, IEEE Systems Journal, Vol. 5, No. 2, pp. 146-155.  https://doi.org/10.1109/JSYST.2010.2090401
  12. Kim, B. S.(2014), Multi-MW Class Wind Turbine Blade Design PartI: Aero-Strucutre Design and Integrated Load Analysis, Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 4, pp. 289-309.  https://doi.org/10.3795/KSME-B.2014.38.4.289
  13. Kim, B. S.(2015), Rotor-Blade Shape Design and Power-Performance Analysis for Horizontal-Axis Tidal Turbine Using CFD, The Korean Society of Mechanics Engineers, Vol. 39, No. 8, pp. 661-688.  https://doi.org/10.3795/KSME-B.2015.39.8.661
  14. Kong C. D., M. W. Kim, and H. B Park(2012), A Study on Structural Design and Analysis of Large Scale and High Efficiency Blades for Wind Turbine System, The Society for Aerospace System Engineering, Vol. 6, No. 4, pp. 7-11. 
  15. Nguyen, Q. D., H. C. Park, T. Kang, and J. H. Ko(2018), Structural design and analysis of composite blade for horizontal-axis tidal turbine, the journal Science and Engineering of Composite Materials, Vol. 25, No. 6, pp. 1075-1083.  https://doi.org/10.1515/secm-2017-0093
  16. Resor, B. R.(2013), Definition of a 5MW/61.5m Wind Turbine Blade Reference Model, Sandia National Laboratories, SAND2013-2569. 
  17. Singh, P. M. and Y. D. Choi(2014), Shape design and numerical analysis on a 1 MW tidal current turbine for the south-western coast of Korea, Renewable Energy, Vol. 68, pp. 485-493.  https://doi.org/10.1016/j.renene.2014.02.032
  18. Sun, C. T., B. J. Quinn, J. Tao, and D. W. Oplinger(1996), Comparative Evaluation of Failure Analysis Methods for Composite Laminates, NASA, DOT/FAA/AR-95/109. 
  19. Tangler J. L. and D. M. Somers(1995), NREL Airfoil Families for HAWTs, National Renewable Energy Laboratory (NREL), NREL/TP-442-7109. 
  20. World Energy Resources Marine energy(2016), WORLD ENERGY COUNCIL. 
  21. Yang, C. J.(2011), Theoretical Study on Assessment of Tidal Stream Resources, Journal of the Korean Society of Marine Environment & Safety, Vol. 17, No. 1, pp. 23-28.  https://doi.org/10.7837/kosomes.2011.17.1.023
  22. Zhang, S., T. L. Jansen, O. Franek, Pattrick C. F. Eggers, K. Olesen, C. Byskov, and G. F. Pedersen(2015), Journal of MDPI/Sensors, doi:10.3390/s150819768.