References
- B. G. Pollet, I. Staffell, and J. L. Shang, Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects, Electrochemica Acta, 84, 235 (2012). Doi: https://doi.org/10.1016/j.electacta.2012.03.172
- J. Baumeister, J. Weise, E. Hirtz, K. Hohne, and J. Hohe, Applications of aluminum hybrid foam sandwiches in battery housings for electric vehicles, Procedia Materials Science, 4, 317 (2014). Doi: https://doi.org/10.1016/j.mspro.2014.07.565
- S. Arora, W. Shen, and A. Kapoor, Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renewable and Sustainable Energy Reviews, 60, 1319 (2016). Doi: https://doi.org/10.1016/j.rser.2016.03.013
- G. Schuh, G. Bergwei, F. Fiedler, and M. Koltermann, Flexible Production Concept of a Low-Cost Battery Pack Housing for Electric Vehicles, 53rd CIRP Conference on Manufacturing Systems, 93, 137 (2020). Doi: https://doi.org/10.1115/FuelCell2014-6641
- A. Kampker, G. Bergweiler, F. Fiedler, and A. Hollah, Battery Pack Housing for Electric Vehicles Made by Laser Beam Welding, ATZ Worldwide, 121, 72 (2019). Doi: https://doi.org/10.1007/s38311-019-0058-7
- F. Fiedler, G. Bergweiler, and A. Kampker, Laser Welding Process Development for Jigless Joining of a Low-Cost Battery Pack Housing, Proc. 72ndIIW Annual Assembly and International Conference (2019). https://www.researchgate.net/publication/338839202
- S. W. Kang, J. W. Kim, Y. J. Jang, and K. J. Lee, Welding Deformation Analysis, Using an Inherent Strain Method for Friction Stir Welded Electric Vehicle Aluminum Battery Housing, Considering Productivity, Applied Sciences, 9, 3848 (2019). Doi: https://doi.org/10.3390/app9183848
- C. Vargel, Corrosion of Aluminum, 1st, p.12, ELSEVIER, (2004).
- A. K. Sfikas and A. G. Lekatou, Electrochemical Behavior of Al-Al9Co2 Alloys in Sulfuric Acid, Corrosion and materials degradation, 1, 249 (2020). Doi: https://doi.org/10.3390/cmd1020012
- S. L. H. Quaireau, M. Laot, K. Colas, B. Kapusta, S. Delpech, and D. Gosset, Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers, Journal of Alloys and Compounds, 833, 155146 (2020). Doi: https://doi.org/10.1016/j.jallcom.2020.155146
- Z. Qin and H. Xu, Effect of Surface State on Acid Rain Corrosion Resistance of T6 6005A Aluminum Alloy by BT-FSW Joint, IOP Conference Series : Materials Science and Engineering, 727, 012003 (2020). Doi: https://doi.org/10.1088/1757-899X/727/1/012003
- X. K. Yang, L. W. Zhang, S. Y. Zhang, M. Liu, K. Zhou, and X. L. Mu, Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments, Materials and Corrosion, 68, 529 (2017). Doi: https://doi.org/10.1002/maco.201609201
- I. W. Huang, B. L. Hurley, F. Yang, and R. G. Buchheit, Dependence on Temperature, pH, and Cl? in the Uniform Corrosion of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6, Electrochimica Acta, 199, 242 (2016). Doi: https://doi.org/10.1016/j.electacta.2016.03.125
- B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy, Corrosion Science, 50, 1814 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.03.00
- X. Zhang, M. Liu, F. Lu, M. Liu, Z. Sun, and Z. Tang, Atmospheric corrosion 7B04 aluminum alloy in marine environments, Corrosion Science and Technology, 17, 6, (2018). Doi: https://doi.org/10.14773/cst.2018.17.1.6
- S. J. Kim, E. H. Hwang, I. C. Park, and S. J. Kim, Electrochemical corrosion damage characteristics of aluminum alloy materials for marine environment, Journal of Korean Institute Surface Engineering, 6, 421, (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.6.421
- ASTM G46-94, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, p.3, ASTM International, West Conshohocken, PA, (2004).
- J. H. Kim, Acid Rain, p. 47, SNU Press (2007).
- A. U. Malic, P. C. M. Kutty, N. A. Siddiqi, N. Andijani, and S. Ahmed, The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions, Corrosion Science, 33, 1809, (1992). Doi: https://doi.org/10.1016/0010-938X(92)90011-Q
- X. Zhang, S. L. Russo, S. Zandolin, A. Miotello, E. Cattaruzzza, P. L. Bonora, and L. Benedetti, The pitting behavior of Al-3103 implanted with molybdenum, Corrosion Science, 43, 85 (2001). Doi: https://doi.org/10.1016/S0010-938X(00)00058-5
- S. Ono, T. Makino, and R. S. Alwitt, Crystallographic Pit Growth on Aluminum (100), Journal of The Electrochemical Society, 152, B39 (2005). Doi: https://doi.org/10.1149/1.1839471
- Y. J. Yang and S. J. Kim, Electrochemical characteristics of aluminum alloys in sea water for marine environement, Acta Physica Polonica A, 135, 1005 (2019). https://doi.org/10.12693/aphyspola.135.1005
- A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711, (2014). Doi: https://doi.org/10.3390/ma7085711
- M. Curioni and F. Scenini, The Mechanism of Hydrogen Evolution During Anodic Polarization of Aluminium, Electrochimica Acta, 180, 712, (2015). Doi: https://doi.org/10.1016/j.electacta.2015.08.076
- K. S. Athanasios and G. L. Angeliki, Electrochemical Behavior of Al-Al9Co2 Alloys in Sulfuric Acid, Corrosion and Materials Degradation, 1, 249, (2020). Doi: https://doi.org/10.3390/cmd1020012
- M. A. Arshadi, J. B. Johnson, and G. C. Wood, The influence of an isobutane-SO2 pollutant system on the earlier stages of the atmospheric corrosion of metals, Corrosion Science, 23, 763 (1983). Doi: https://doi.org/10.1016/0010-938X(83)90039-227.
- T. E. Graedel, Corrosion Mechanisms for Aluminum Exposed to the Atmosphere, Journal of The Electrochemical Society, 136, 204C (1989). Doi: https://doi.org/10.1149/1.2096869
- D. D. Macdonald, The Point Defect Model for the Passive State, Journal of The Electrochemical Society, 139, 3434 (1992). Doi: https://doi.org/10.1149/1.2069096
- T. P. Hoar and W. .R Jacob, Breakdown of Passivity of Stainless Steel by Halide Ions, Nature, 216, 1299 (1967). Doi: https://doi.org/10.1038/2161299a0
- A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711, (2014). Doi: https://doi.org/10.3390/ma7085711
- D. A. Jones, Principles and prevention of corrosion, 2nd, pp. 267 - 273, Prentice Hall, New Jersey (1996).
- Z. S. Smialowska, Pitting corrosion of aluminum, Corrosion Science, 41, 1743 (1999). Doi: https://doi.org/10.1016/S0010-938X(99)00012-8
- P. Leblanc and G. S. Frankel, A Study of Corrosion and Pitting Initiation of AA2024-T3 Using Atomic Force Microscopy, Journal of The Electrochemical Society, 149, B239 (2002). https://doi.org/10.1149/1.1471546
- R. T. Foley, The localized corrosion of aluminum alloys -A Review, Corrosion, 42, 277 (1986). https://doi.org/10.5006/1.3584905