DOI QR코드

DOI QR Code

Investigation on Electrochemical Characteristics of Battery Housing Material for Electric Vehicles in Solution Simulating an Acid Rain Environment with Chloride Concentrations

산성비 환경을 모사한 수용액에서 염화물 농도에 따른 전기자동차 배터리 하우징용 재료의 전기화학적 특성 연구

  • Shin, Dong-Ho (Graduate school, Mokpo national maritime university) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 신동호 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2022.04.20
  • Accepted : 2022.04.26
  • Published : 2022.05.06

Abstract

Electrochemical characteristics and damage behavior of 6061-T6 aluminum alloy used as a battery housing material for electric vehicles were investigated in solution simulating the acid rain environment with chloride concentrations. Potentiodynamic polarization test was performed to analyze electrochemical characteristics. Damage behavior was analyzed through Tafel analysis, measurement of damage area, weight loss, and surface observation. Results described that corrosion current density was increased rapidly when chloride concentration excceded 600 PPM, and it was increased about 7.7 times in the case of 1000 PPM compared with 0 PPM. Potentiodynamic polarization experiment revealed that corrosion damage area and mass loss of specimen increased with chloride concentrations. When chloride concentration was further increased, the corrosion damage area extended to the entire surface. To determine damage tendency of pitting corrosion according to chloride concentration, the ratio of damage depth to width was calculated. It was found that the damage tendency decreased with chloride concentrations. Thus, 6061-T6 aluminum alloy damage becomes larger in the width direction than in the depth direction when a small amount of chloride is contained in an acid rain environment.

Keywords

References

  1. B. G. Pollet, I. Staffell, and J. L. Shang, Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects, Electrochemica Acta, 84, 235 (2012). Doi: https://doi.org/10.1016/j.electacta.2012.03.172
  2. J. Baumeister, J. Weise, E. Hirtz, K. Hohne, and J. Hohe, Applications of aluminum hybrid foam sandwiches in battery housings for electric vehicles, Procedia Materials Science, 4, 317 (2014). Doi: https://doi.org/10.1016/j.mspro.2014.07.565
  3. S. Arora, W. Shen, and A. Kapoor, Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renewable and Sustainable Energy Reviews, 60, 1319 (2016). Doi: https://doi.org/10.1016/j.rser.2016.03.013
  4. G. Schuh, G. Bergwei, F. Fiedler, and M. Koltermann, Flexible Production Concept of a Low-Cost Battery Pack Housing for Electric Vehicles, 53rd CIRP Conference on Manufacturing Systems, 93, 137 (2020). Doi: https://doi.org/10.1115/FuelCell2014-6641
  5. A. Kampker, G. Bergweiler, F. Fiedler, and A. Hollah, Battery Pack Housing for Electric Vehicles Made by Laser Beam Welding, ATZ Worldwide, 121, 72 (2019). Doi: https://doi.org/10.1007/s38311-019-0058-7
  6. F. Fiedler, G. Bergweiler, and A. Kampker, Laser Welding Process Development for Jigless Joining of a Low-Cost Battery Pack Housing, Proc. 72ndIIW Annual Assembly and International Conference (2019). https://www.researchgate.net/publication/338839202
  7. S. W. Kang, J. W. Kim, Y. J. Jang, and K. J. Lee, Welding Deformation Analysis, Using an Inherent Strain Method for Friction Stir Welded Electric Vehicle Aluminum Battery Housing, Considering Productivity, Applied Sciences, 9, 3848 (2019). Doi: https://doi.org/10.3390/app9183848
  8. C. Vargel, Corrosion of Aluminum, 1st, p.12, ELSEVIER, (2004).
  9. A. K. Sfikas and A. G. Lekatou, Electrochemical Behavior of Al-Al9Co2 Alloys in Sulfuric Acid, Corrosion and materials degradation, 1, 249 (2020). Doi: https://doi.org/10.3390/cmd1020012
  10. S. L. H. Quaireau, M. Laot, K. Colas, B. Kapusta, S. Delpech, and D. Gosset, Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers, Journal of Alloys and Compounds, 833, 155146 (2020). Doi: https://doi.org/10.1016/j.jallcom.2020.155146
  11. Z. Qin and H. Xu, Effect of Surface State on Acid Rain Corrosion Resistance of T6 6005A Aluminum Alloy by BT-FSW Joint, IOP Conference Series : Materials Science and Engineering, 727, 012003 (2020). Doi: https://doi.org/10.1088/1757-899X/727/1/012003
  12. X. K. Yang, L. W. Zhang, S. Y. Zhang, M. Liu, K. Zhou, and X. L. Mu, Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments, Materials and Corrosion, 68, 529 (2017). Doi: https://doi.org/10.1002/maco.201609201
  13. I. W. Huang, B. L. Hurley, F. Yang, and R. G. Buchheit, Dependence on Temperature, pH, and Cl? in the Uniform Corrosion of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6, Electrochimica Acta, 199, 242 (2016). Doi: https://doi.org/10.1016/j.electacta.2016.03.125
  14. B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy, Corrosion Science, 50, 1814 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.03.00
  15. X. Zhang, M. Liu, F. Lu, M. Liu, Z. Sun, and Z. Tang, Atmospheric corrosion 7B04 aluminum alloy in marine environments, Corrosion Science and Technology, 17, 6, (2018). Doi: https://doi.org/10.14773/cst.2018.17.1.6
  16. S. J. Kim, E. H. Hwang, I. C. Park, and S. J. Kim, Electrochemical corrosion damage characteristics of aluminum alloy materials for marine environment, Journal of Korean Institute Surface Engineering, 6, 421, (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.6.421
  17. ASTM G46-94, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, p.3, ASTM International, West Conshohocken, PA, (2004).
  18. J. H. Kim, Acid Rain, p. 47, SNU Press (2007).
  19. A. U. Malic, P. C. M. Kutty, N. A. Siddiqi, N. Andijani, and S. Ahmed, The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions, Corrosion Science, 33, 1809, (1992). Doi: https://doi.org/10.1016/0010-938X(92)90011-Q
  20. X. Zhang, S. L. Russo, S. Zandolin, A. Miotello, E. Cattaruzzza, P. L. Bonora, and L. Benedetti, The pitting behavior of Al-3103 implanted with molybdenum, Corrosion Science, 43, 85 (2001). Doi: https://doi.org/10.1016/S0010-938X(00)00058-5
  21. S. Ono, T. Makino, and R. S. Alwitt, Crystallographic Pit Growth on Aluminum (100), Journal of The Electrochemical Society, 152, B39 (2005). Doi: https://doi.org/10.1149/1.1839471
  22. Y. J. Yang and S. J. Kim, Electrochemical characteristics of aluminum alloys in sea water for marine environement, Acta Physica Polonica A, 135, 1005 (2019). https://doi.org/10.12693/aphyspola.135.1005
  23. A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711, (2014). Doi: https://doi.org/10.3390/ma7085711
  24. M. Curioni and F. Scenini, The Mechanism of Hydrogen Evolution During Anodic Polarization of Aluminium, Electrochimica Acta, 180, 712, (2015). Doi: https://doi.org/10.1016/j.electacta.2015.08.076
  25. K. S. Athanasios and G. L. Angeliki, Electrochemical Behavior of Al-Al9Co2 Alloys in Sulfuric Acid, Corrosion and Materials Degradation, 1, 249, (2020). Doi: https://doi.org/10.3390/cmd1020012
  26. M. A. Arshadi, J. B. Johnson, and G. C. Wood, The influence of an isobutane-SO2 pollutant system on the earlier stages of the atmospheric corrosion of metals, Corrosion Science, 23, 763 (1983). Doi: https://doi.org/10.1016/0010-938X(83)90039-227.
  27. T. E. Graedel, Corrosion Mechanisms for Aluminum Exposed to the Atmosphere, Journal of The Electrochemical Society, 136, 204C (1989). Doi: https://doi.org/10.1149/1.2096869
  28. D. D. Macdonald, The Point Defect Model for the Passive State, Journal of The Electrochemical Society, 139, 3434 (1992). Doi: https://doi.org/10.1149/1.2069096
  29. T. P. Hoar and W. .R Jacob, Breakdown of Passivity of Stainless Steel by Halide Ions, Nature, 216, 1299 (1967). Doi: https://doi.org/10.1038/2161299a0
  30. A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711, (2014). Doi: https://doi.org/10.3390/ma7085711
  31. D. A. Jones, Principles and prevention of corrosion, 2nd, pp. 267 - 273, Prentice Hall, New Jersey (1996).
  32. Z. S. Smialowska, Pitting corrosion of aluminum, Corrosion Science, 41, 1743 (1999). Doi: https://doi.org/10.1016/S0010-938X(99)00012-8
  33. P. Leblanc and G. S. Frankel, A Study of Corrosion and Pitting Initiation of AA2024-T3 Using Atomic Force Microscopy, Journal of The Electrochemical Society, 149, B239 (2002). https://doi.org/10.1149/1.1471546
  34. R. T. Foley, The localized corrosion of aluminum alloys -A Review, Corrosion, 42, 277 (1986). https://doi.org/10.5006/1.3584905